A037A * Zeiss APQ # 96998 100/640 mit Glasweg verwenden

Der Glasweg macht die Farbreinheit

Bei diesem Zeiss APQ sollte man niemals einen Zenit-Spiegel verwenden wollen. In einem solchen Falle würde die Farbreinheit dieses mit einem
Zenitprisma konzipierten Systems auf die Farbreinheit eines ED_APO's bzw. Halb-APO's zurückfallen. Die üblichen Standard-Tests zeigen den
Sachverhalt in anschaulicher Weise. Es wurde also im ersten Durchlauf A) nur das Objektiv selbst auf Farbreinheit untersucht. Im zweiten Durch-
lauf B) wurde der Gesamt-Tubus incl. des Zenit-Prismas mit 35 mm hinsichtlich Farbreinheit getestet. Es zeigt sich also bereits sehr augenfällig,
wie wichtig der Glasweg "Zenitprisma" in diesem Zusammenhang ist. Um die Ergebnisse besser unterscheiden zu können, wurde für Durchlauf
A) ein blaßgelber Hintergrund gewählt, für Durchlauf  B) ein hellblauer Hintergrund benutzt.

APQ_96998-01.jpg

Bereits der Artificial Sky Test läßt die unterschiedliche Situation erkennen: Der 1. Beugungsring ist rötlich eingefärbt als Hinweis, daß die Schnittpunkte der Spektralfarben
etwas weiter auseinanderliegen müssen. Die Abbildung bzw. Auflösung entspricht der theoretisch möglichen Auflösung.

.
APQ_96998-02.jpg
.
Beim Foucault-Test im Beispiel links wird das Bild eindeutig in Gelb (links) und Blau (rechts) getrennt. Das ist ein Hinweis, daß die Schnittpunkte der Spektralfarben 
weiterauseinander liegen. http://rohr.aiax.de/foucault-bilder.jpg Die unterste Zeile dieser Übersicht zeigt die Farbtrennung ganz deutlich bei den FH-Optiken.
Anders hingegen das Foucault-Bild eines APO's rechts. Hier werden die Farben "sichelförmig" verteilt, weil der Gaußfehler in diesem Zusammenhang ähnlich große
Werte hat, wie der Farblängsfehler.

APQ_96998-03.jpg
.
Noch eindeutiger ist schließlich der Vergleich der Interferogramme und die daraus abzuleitende RC_Index-Zahl: http://rohr.aiax.de/RC_Index.png Im Fall A) ohne Zenit-
prisma kippen die Streifen bei Blau deutlicher nach oben ab, während es mit Glasweg bei B) etwa der Abweichung für Rot entspricht. In der Auswertung A) hätten wir die
Farbreinheit einer ED_Linse, bei Auswertung B) darunter haben wir es mit einem guten farbreinen APO zu tun.

APQ_96998-04.jpg
.
Der Glasweg führt kaum weitere opt. Fehler ein, ist aber für die Farbkorrektur als planparallele Platte von entscheidender Bedeutung.

APQ_96998-05.jpg
.
Die Formel (http://rohr.aiax.de/RC_Index.png) rechnet das arithmetische Mittel der Farbschnittweiten von Blau und Rot im Vergleich zu Grün als Nullpunkt und vergleicht
diesen Betrag mit der Schärfentiefe. Die folgende Übersicht ergibt für Situation A) und B) die jeweiligen Werte für die RC_Indexzahl .

APQ_96998-06.jpg
.
Bei Testaufbau B) muß man einige Verrenkungen machen, bis man in den Fokus des Systems kommt.

APQ_96998-07.jpg
.
Beim Sterntest mit 142-facher Vergrößerung lassen sich kaum signifikante Farbsäume intra- oder extrafokal erkennen: Intrafokal hat man große Mühe, überhaupt
einen Farbsaum zu erkennen, extrafokal einen leichten gelb-rötlichen Saum, was ein Hinweis auf das Sekundäre Spektrum ist. Die Artefakte intrafokal sind Staub-
teilchen an Okular und Kamera-Linse. Wir haben es also mit einer sehr farbreinen Optik zu tun.



Ohne große Auswertung des Streifenbildes bei e = 546.1 nm wave kann man bereits von einem hohen Strehlergebnis ausgehen: inclusive  Rest-Astigmatismus, Koma und Spherical.

APQ_96998-08.jpg

Die Energieverteilung ist optimal für einen Refraktor
.
APQ_96998-09.png
.
Der Wert für Rest-Astigmatismus liegt bei ca. PV L/15.2 und ist vernachlässigbar. Koma = PV L/35, die sphärische Abweichung bei PV L/37 .

APQ_96998-10.jpg
.
Damit liegt das APQ ohne Glasweg bei einem Strehl von 0.988, also einem hohen Wert. Mit Glasweg liegt der Strehl immer noch  bei einem hohen Wert
von 0.973. Die Differenz enthält aber noch die "Unschärfe" bei Strehlauswertungen bzw. deren Einflüsse.

Zur Erklärung: Der Strehlwert beschreibt die Topografie der ankommenden Wellenfront im Verhältnis zum Ideal-Zustand: Damit kommen die
opt. Fehler zum Zug, die unter Zernike Koeffizienten hier aufgelistet sind: 
http://r2.astro-foren.com/index.php/de/2-uncategorised/61-der-zernike-zoo-5-april-2006 Es sind also Astigmatismus, Koma und Spherical
der Meßwellenlänge. Die Energie-Verlagerung in die Begeungsringe durch Über- und Unterkorrektur sind über Spherical strehl-mindernd,
die Obstruktion von opt. Systemen hingegen nicht.
Wenn also mit dem Zenit-Prisma ein weiteres opt. Bauteil eingeführt wird, so ist damit zu rechnen, daß der Strehlwert
geringfügig abnimmt.

APQ_96998-11.jpg
.
Zu diesem Bericht gibt es hier weitere Berichte: 

Apochromaten, Beispiele, Einzelsysteme 

A032 * Zeiss_B Objektiv 110/1620 mm wird optimiert, Optik-Konferenz, Wolfgang Busch
A033 * Zeiss APQ 130/1000 #97755 - Nur mit Glasweg ein Super-APO 
A034 * Zeiss APQ 130/1000 # 97161 CaF2-Immersions-Optik: Nur mit Glasweg sehr farbrein
A035 * Zeiss APQ 130/1000 #95988 - ohne Glasweg ein guter APO
A036 * Carl Zeiss APQ 100/640 Fluorith APO # 97039 mit Glasweg verwenden
A037 * Zeiss APQ # 97003 100/640 mit Glasweg verwenden

Bildfehler im Bildfeld:

Bei einer kontrollierten Verkippung zwischen 0.0° bis 1.0° Kippwinkel reagiert auch dieser Zeiss APQ 100/640 hauptsächlich mit Astigmatismus
und etwas weniger mit Koma, wie in der Tabelle zu sehen: 4. Reihe von oben: Orginal-Bild mit 4. Reihe hier.