A139 TS Photoline APO - Super-APO für visuelle Beobachtung

Als vielseitig verwendbaren Super APO könnte man diesen TS Photoline bezeichnen: Vom Namen her würde man dieses Objektiv eher
als "Foto-Maschine" einsortieren, zusammen mit dem Photoline Reducer 0.79 x. Auffällig in dem Zusammenhang ist jedoch - bei drei
aufeinanderfolgenden Exemplaren festgestellt - eine enorme Farbreinheit, die der eines Super-APO's entsprechen würde. Damit hätte
man für visuelle Bedürfnisse einen lichtstarken farbreinen APO.
An Zentrierschrauben mangelt es dieser Objektiv-Fassung nicht - ganze 8 x 3 kleine "Maden-Schrauben" M4 x 5 mm. Ein Vorteil, wenn
man die Achskoma bis "zum Anschlag" ausreizen will: Dann sind es nur noch winzige Beträge, die sich aber sehr wohl bei 505-facher
Vergrößerung über den Artificial Sky Test kontrollieren läßt. Man legt besonders Augenmerk auf den 1. Beugungsring. Erst wenn dieser
konzentrisch zum Koma-Kern erscheint, dann liegt der Koma-Restfehler unter PV Lambda/22. Dieses Objektiv wurde auch fotografisch
bereits getestet. Eine Möglichkeit, sog. Spikes an hellen Sternen zu vermeiden, sieht man hier: Wenn eines der Distanz-PLättchen um
weniger als 1 mm in den Strahlengang ragt, dann beseitigt man das mit einer Objektiv-Blende, wie hier zu sehen. Diese Blende ist
jederzeit wieder abnehmbar, aber durchaus nützlich.

-
TSPl_Rep_01.jpg
-
Erst bei einer Vergrößerung von 505-fach kann man über den 1. Beugungs-Ring mit hoher Präzision die Reste von Achskoma und zugleich
Farbquerfehler nahezu vollends beseitigen. Hier sieht der Foto-Chip noch Restfehler, die man mit dem Auge bereits nicht mehr sieht.


TSPl_Rep_02.jpg

Während das linke Foucaultbild bereits ein Hinweis auf die Farbreinheit dokumentiert, zeigt das Ronchi-Bild rechts einen hohen Kontrast
über die dunkle Fläche zwischen hellen Streifen und mittigen Beugungslinien. 


TSPl_Rep_03.jpg
-
Ein solches IGramm läßt einen hohen Strehlwert erwarten.

TSPl_Rep_04.jpg
-
Die Wellenfront-Darstellung

TSPl_Rep_05.jpg
-
die Licht-Energie-Verteilung nach der bekannten Funktion

TSPl_Rep_06.png
-
TSPl_Rep_07.jpg
-
TSPl_Rep_08.jpg
-
Man kann bei der Auswertung die Rest-Fehler differenzieren, auch als Dokumentation für die geleistete Optimierujng.

TSPl_Rep_09.jpg
-
Der übliche Test-Report, wobei eine Serien-Nummer für derartige Objektiv wünschenswert wäre.

TSPl_Rep_10.jpg
-
Man unterscheidet bei Objektiven immer die Sphäro-Chromasie (Gaußfehler) und das Sekundäre Spektrum (Farblängsfehler) Über die
Größe des Sekundären Spektrums berechnet man schließlich die Farbreinheit mit einer RC_Index Zahl nach der folgenden Formel:
http://rohr.aiax.de/@Trav_GW_07.jpg

TSPl_Rep_11.jpg
-
TSPl_Rep_12.jpg
-
TSPl_Rep_13.jpg
-
Eine äußerst empfindliche Möglichkeit ein solches Objektiv zu zentrieren bietet mein Artificial Sky Test. Bei einer Höchst-Vergrößerung
von 505-fach kann man über die 3-5µ großen Pinholes sehr gut den 1. Beugungsring erkennen, der immer konzentrisch zum Licht-Kern
sein muß. Das entspricht der Energie-Übertragungs-Funktion im folgenden Bild rechts. Bei einer Dezentrierung zeigt sich dieser
1. Beugungs-Ring ebenfalls nicht mehr konzentrisch, sodaß über diesen Effekt sehr feinfühlig eine Optik zentriert werden kann.


TSPl_Rep_14.jpg



Zur Abrundung der Untersuchung läßt sich zusammen mit dem TS Photoline 0.79 Reducer ein fotografisches System zusammenstellen.
Die dazu nötigen Abstände auf der OAZ-Skala (rechts) und dem Abstand zu Fokus (links) sollten möglichst eingehalten werden.




Wobei für diesen Fall der Riccardi-Reducer die bessere Wahl wäre, wenn man im Bildfeld den ansteigenden Farbquerfehler vermeiden will.
Dieser würde völlig verschwinden, wenn man mit einem Interferenz-Filter fotografiert, besonders dann ist die Abbildung auch bei einem 
Bildwinkel von 3.0° perfekt, wie das untere Bild zeigt. Eventuell läßt sich dieser Sachverhalt für die Darstellung von Sternspektren nutzen.
Man muß sich nur zu helfen wissen. Siehe auch diesen Bericht:

Hier das Beispiel mit dem kleinen (M63x1) Riccardi Reducer 0.75x . Da die Tubus-Länge in diesem Fall zu groß war, konnte man den Reducer
nur einstecken, was leichte Zentrierfehler nach sich zieht. Der Farbquerfehler im Bildfeld allerdings ist wesentlich besser korrigiert.




Kommentare   

# Alistair G. 2017-06-13 00:36
How did you get rid of the coma (on the right-hand side of the 2nd picture down from the top) ? Did you ONLY use the 3 tip / tilt screws that hold the lens cell onto the tube?
Antworten