A012 Farblängsfehler messen mit dem Bath-Interferometer

Farblängsfehler messen

Das ist wirklich ein APO !!!

Augenblicklich gibt es eine Foren-Diskussion, wie der von mir bei einem 80/560 Apo gemessene Farblängsfehler von 0.3
mm über drei Objektive zu würdigen sei. Da ich mich aus einer Würdigung meine Meßergebnisse grundsätzlich heraus-
halten muß (da sind Händler, Kunden und Designer gefragt - hoffentlich wird der einschlägige Artikel bald veröffentlicht,
auf dessen Formeln mein W-Wert beruht. Um aber die Entstehung meiner Daten transparenter zu machen, hier ein
Bericht, wie sie entstehen. Jeder kann diese Messungen nachvollziehen, und zwar bereits über den Sterntest, der
hier angefügt wurde im Vergleich zu diesem Teleskop.

Man erkennt es hoffentlich wieder, mein TMB Apo 100/800, Referenz-Optik für diese Art Diskussion, sehr farbrein, ähnlich
gut wie der Takahashi 102/820, nur die Lage der Spektral-Farben ist anders.

@chrom_aberr01.jpg

Eine der interessantesten Eigenschaften des Bath-Interferometers ist die Tatsache, daß er mit normalem Weißlicht
ebenfalls funktioniert, weil er nämlich keine Kohärenzlänge braucht, wie andere Interferometer. Damit hat man die
Möglichkeit, im gesamten Spektrum des sichtbaren Lichtes zu messen mit einer hohen Genauigkeit, wenn man sich
weiter unten die techn. Daten von Melles Griot einmal anschaut. Die Anordnung der Komponenten ist analog der
üblichen Anordnung: Als Lichtquelle dient ein 0.4 mm Pinhole im Fokus eines ca. 120 mm kleinen Achromaten, der
ein ziemlich genaues Parallel-Bündel draus macht mit einer Blende von ca. 4 mm, damit die kleine Bikonvex-Linse
gut ausgeleuchtet wird. Linse mit Blende sitzt im Klötzchen mit dem blauen Klebeband. Dahinter Platz für die
kleinen Interferenzfilter, die aus opt. Gründen im parallelen Strahlgang stehen müssen. Alles übrige entspricht der
üblichen Anordnung.

@chrom_aberr02.jpg

Damit auch die Toleranz der verwendeten Interferenzfilter eindeutig ist, das Datenblatt von Melles Griot.

Der kleine
12 mm im Durchmesser Filter ist ungefaßt, weshalb man auf ihn sorgfältig aufpassen sollte.

@chrom_aberr04.jpg

Damit auch der Farbeindruck der verwendeten Filter erkennbar ist, sei dieses Foto angefügt.

@chrom_aberr05.jpg

Ein weiteres Detail ist die Mikrometerschraube des Koordinaten-Tisches mit den üblichen 0.01 mm Teilerstrichen und
einer Ablesegenauigkeit von mindestens 0.005 mm und besser. Bei der exakten Vermessung sollte man den "toten" Gang
der Gewindespindel in der Weise berücksichtigen, indem man mit der kürzestens Schnittweite beginnt, beim TMB diesmal
Rot, weil dann die Spindel niemals zurück, sondern immer nur in einer Richtung weitergedreht wird. Also in diesem Fall
nacheinander: Rot, Gelb, Grün und Blau. Der Meßbereich von 25 mm ist für diesen Fall ausreichend, (wenn man es über-
treiben will, könnte man auch eine 0.001 mm Meßuhr benutzen, was aber gar nicht erforderlich ist.)

@chrom_aberr03.jpg

@ZeissAS-Schr05.jpg

Nun habe ich absichtsvoll vor einigen Tagen das mit ZEMAX gezeichnete Diagramm der chromatischen Aberration
unter dem Aspekt des Farblängsfehlers vermessen mit einem W_gesamt-Wert von 0.4578. Aus der Differenz zum
aktuell vermessenen besseren Wert von W_gesamt von 0.2976 und der anderen Lage der Farben, mag man
erkennen, daß die Diagramm-Darstellung die Wirklichkeit nicht gut reproduziert. Anders als im Diagramm fällt
nicht die F-Linie (blau) am kürzesten sondern bei der Messung die C-Linie (rot) Betrachtet man aber die Ergebnisse
dann ist das TMB Apo in der Praxis besser als im gerechneten Design, wobei man beachten muß, daß im Diagramm
von der Brennweiten-Differenz ausgegangen wird, während ich eine Schnittweiten-Differenz messe, und zwar nur
die Differenz bezogen auf den e-Linien-Fokus als Null-Punkt, das ist dann erreicht, wenn die Streifen mit allen Fehlern
möglichst gerade sind. Bei Unter- oder Überkorrektur auf die 0.7 Zone oder Rand-Mitte-Rand auf einer Linie, wie bei
der Parabel.

@chrom_aberr06.gif

Zur Demonstration der unterschiedlichen Farb-Schnittweiten wäre natürlich der Scopos 80/560 mit einer Differenz
von ca. 0.3 mm geeigneter, weil sich für diesen Fall die Interferenz-Streifen erheblich stärker durchbiegen würden.
In diesem Fall führt das sehr weit nach "hinten herausfallende" Rot zu einer überdeutlichen Verformung der Inter-
ferenzstreifen mit der man auf andere Weise das sekundäre Spektrum kathegorisieren könnte. Bei einem hochwerti-
gen und farbreinen Apo läßt sich das deshalb nicht so gut zeigen. Man muß also sehr viel genauer
hinschauen, damit man die 0.01 mm Abweichung und weniger exakt vermißt. Deshalb auch die dünne grüne Linie
quer durch alle Interferogramme: Bei dieser Übersicht wurde exakt auf die e-Linie fokussiert, und lediglich die
anderen Filter ausgetauscht. Aus der geringen Durchbiegung der Interferenz-Streifen erkennt man aber doch, die
Längenabweichung von rot <-> grün von 0.04 mm. Für die Vermessung empfiehlt es sich, nur noch 1 - 2 Streifen
einzustellen, und ganz sorgfältig - zu einem dünnen Lineal hin orientiert - zu fokussieren. Siehe erstes Bild.

Wer sich daraufhin die Systematisierung anschaut, erkennt erneut, daß das TMB in der Liga des Takahashi oder eines
HCQ oder eines Astreya Super Apo's spielt. Wobei das HCQ mit Glasweg verwendet werden sollte,

das TMB hingegen
ohne Glasweg.

@chrom_aberr07.jpg

Eine Anmerkung zum nächsten Bild: Orientiert an dem Lineal stellt man entweder die Streifen in gleicher Weise ein und
liest die Schnittweiten-Differenz an der Mikrometerschraube ab, oder aber man fokussiert exakt auf Grün und erkennt an
der Durchbiegung der Streifen die Schnittweiten-Abweichung: Nach oben gebogen bedeutet: Schnittweite fällt kürzer,
nach unten gebogen bedeutet, Schnittweite fällt länger. Im Vergleich zum TMB Apo bei 800 Fokus erleiden die Streifen
eine gewaltige Durchbiegung über den Farblängsfehler.

@scopos-sec13.jpg

Wie sensibel bereits der Sterntest die aktuelle TMB Apo Farbverteilung ebenfalls darstellt, sieht man am gut sichtbaren
Rotsaum, den das Sternscheibchen extrafokal umgibt. Über die Vermessung der Farbschnittpunkte, Rot liegt gerade mal
0.04 mm vor grün als Bezugspunkt, läßt sich auch qualitativ sehr anschaulich der Farblängsfehler bzw. das sekundäre
Spektrum oder die chromatische Aberration von jedem eindruckvoll darstellen, nur halt nicht so exakt vermessen. Für die
Beurteilung wäre das noch nicht einmal so entscheidend.

@chrom_aberr08.jpg

Wer also bei der Neu-Einführung von Linsen-Teleskopen welcher Coleur auch immer, nach einer Systematisierung
sucht, der hat mit dem Sterntest beginnend im Vergleich zu anderen Apo's hier:

@scopos-sec10.jpg

bereits ein gutes Kriterium zur Beurteilung der Farbsituation. Wie man das dann erklärt oder würdigt, soll meine Sache
nun wirklich nicht sein. Meine Berichte dienen der Transparenz von Optiken, denn gerade über die Qualität von Optiken
wird viel erzählt. Ich publiziere hier immer nur meine Meßergebnisse, was ich mir vor allem nicht verbieten lasse.
Eine gewisse Ähnlichkeit besteht tatsächlich zum SkyWatcher ED 100/900 ebenfalls grün und blau dicht
beieinander, gelb um ca. 0.08 dahinter und rot mit einem "weiten" Abstand hierzu.

Puch_SkyW02.jpg

Noch ein paar andere Beispiele: siehe auch hier: http://www.astro-foren.de/showthread.php?t=6849

ICS-Tak02.jpg

@FH152-1200.jpg

ED-Vixen03.jpg

@TAL100-02.jpg

für den TAL FH ergeben sich folgende Werte:

e-Linie ...+ 0.000 mm kürzeste Schnittweite
d-Linie ...+ 0.125 mm RC-Wert: 1.145
F-Linie ...+ 0.345 mm RC-Wert: 3.159
C-Linie ...+ 0.645 mm RC-Wert: 5.910
..............................RC-Wert gesamt 4.532