A078A * TOA 130/1000 #14023 Ortho APO - Spitzen-Qualität // WRohr

Der Sternfreund Geisslinger hat offenbar einen scharfen Blick für hochwertige Teleskop-Optik, wie im Falle dieses TOA 130/1000 von Takahashi,
einem der besten Teleskop-Hersteller für Refraktoren, wie sie in der Hobby-Astronomie Verwendung finden. "Rossis" Urteil blind vertrauend,
erweiterte ich deshalb vor einem Jahr meine Sammlung um dieses Juwel in meinem Fundus hochwertiger Referenz-Optiken. Hier die Kriterien,
mit denen Sternfreund Geisslinger diese Qualität unterscheiden kann:

Zu meinem Test:  Ich begutachtete lediglich den künstlichen Stern auf ca. 30 m bei uns in der Firma . Intrafokal, extrafoka und im Fokus .
Ich lass mir da schon 30 Minuten Zeit .  
Wie identisch sind die Bilder auf beiden Seiten des Fokus . Nah am Fokus , weiter weg. Wie sieht die
Außenseite des äussersten Ringes aus? Ist da Farbe ? Wie ausgefranst ist diese? 
Wie ist die Intensitätsverteilung der Ringe untereinander.
Gibt es da Zonen oder Speichen?  
Wie ist das Verhältnis von hellen Ringen und dunklen Zwischenräumen? Wie scharf oder diffus sind die Ringe?
Wenn man den Okularauszug langsam durchdreht, wie verhält sich das Zentrum: Ein Punkt wird zum Ring dann wieder ein Punkt und so weiter.
Das beobachte ich auf dem ganzen Weg. Von Extrafokal  (ca. 6-8 Ringe) bis Intrafokal. Wie sehen diese Punkte und Ringe aus? Wie verhält sich
der Übergang . 
Die kürzere Entfernung des künstlichen  Sterns  "rechne" ich im Kopf mit ein. Das ist Erfahrung . Das beurteilen der Beugungs-
bilder eigentlich auch...

Ein hochwertiges Teleskop hat mindestens schon mal eine Serien-Nummer, damit es eindeutig zugeordnet werden kann. Die intellegente
Besonderheit dieser Bauweise ist die Zentrier-Möglichkeit der 1. Linse: Damit läßt sich Achskoma vollständig beseitigen. Vielen Refraktoren
wünscht man eine solche Einrichtung. (Die "versenkten"  Zentrierschrauben hingegen verkippen den gesamten Objektivblock zum Tubus.)       

TAK130-WR_01.jpg
-
Der Tubus von vorne und darunter vor dem Planspiegel: Mittig eine Bezugs-Linie, die auf den Interferogrammen unten, vorletztes Bild zu
sehen ist. An dieser Linie orientiert sich die Fokussierung der Streifen, wenn man über die 0.001 digitale Meßuhr die Fokus-Abstände mit
dem Interferometer bestimmen möchte. Schwieriger wird ei Einstellung, wenn zusätzliche Fehler wie Koma und Spherical die exakte
Einstellung stören. Bei Spherical gilt die Rand-Mitte-Rand-Regel, die man an dieser Bezugs-Linie einstellt. Im Falle dieses TOA's hatte man
es immer mir geraden Streifen zu tun, die, je nach Fokuslage, nach oben (kürzer) oder nach unten (länger) abweichen.


TAK130-WR_02.jpg
-
Am üblichen Sterntest, obere Reihe,  lassen sich besonders intra- bzw. extrafokal einige opt. Fehler ablesen: Über den Farbsaum am Rand
bekommt man zunächst eine Auskunft zur Farbreinheit eines Systems. Diese Sammlung zeigt mehrere Systeme nach APO, Halb-APO
und FH-Optiken gegliederte Beispiele. Bei einem Achromaten ist das Sekundäre Spektrum in der Regel um mindestens 4x größer als die
Schärfen-Tiefe. Dieser Quotient wird mit der RC_Indexzahl angegeben. Allgemein gilt: Je deutlicher ein Farbrand beim normalen Sterntest
intra-/extrafokal zu sehen ist, umso mehr tendiert ein System zum ED- oder Halb-APO oder zum Achromaten. Bei einem ED-APO wird dem
Kunden häufig suggeriert, man hätte einen APO vor sich, was sich leicht aus der Vermessung des Sekundären Spektrums widerlegen läßt.
Ein Verkäufer wird sein Teleskop immer in den höchsten Tönen loben, das sollte man eigentlich immer wissen.

Den Artificial Sky Test, untere Reihe, verwende ich mit Höchstvergrößerung, in diesem Fall mit 555-facher Vergrößerung. Er stellt einen be-
sonders sensiblen Übersichts-Test dar, bei dem exakt auf dem Fokus-Punkt selbst geprüft wird: Dort sieht man dann alle optischen Fehler
wie Astigmatismus, Koma, Spherical und die Farb-Situation. Hier eine Sammlung, die man auf dieser Seite findet. Bei diesem TOA liegt eine
kaum wahrnehmbare Achskoma/Zentrierfehler vor, zu erkennen am nicht ganz geschlossenen Beugungs-Ring bei ca. 14:00 Uhr. Dieser
Test ist zugleich ein Auflösungs-Test zwischen der Formel bei 550 nm wave: Auflösung = 138.4038 / D und der fotografischen Abbildung
der mittleren engen Dreierguppe, die sich aus dem inv TAN (0.0055/1000) in arcsec ergibt. Je nach Belichtungszeit ist dieser Abstand noch
genauer, dafür sind aber dann die Beugungsringe nicht mehr zu sehen. 


TAK130-WR_03.jpg
-
Foucault- und Ronchi-Test geben besonders gut Auskunft über die Farbreinheit eines Linsen-Systems und natürlich die Qualität der Oberfläche.
Link__01 allgemein, Links_02 Vergleich von APO's. Je weißlicher der Foucault-Test ausfällt, umso farbreiner ist zunächst ein Objektiv.  Link_03,
Link_04. Die in Link_3/4 gezeigte sichelförmige Farbverteilung ist ein Hinweis auf einen gering-fügigen Gaußfehler, der deswegen erkennbar ist,
weil er von der Messerschneide des Foucault-Testes klar sichbar in intra- und extrafokal unterschieden wird. Das läßt sich erkennen, wenn man
ein Foucault-Bild in seine blau, rot und grünen Bildbstandteile zerlegt. Im Falle dieses TOA fehlt der farbabhängige Öffnungsfehler ganz (Gauß-
Fehler) und so läßt sich nur noch erkennen, daß die Messerschneide des Foucault-Testes bereits erfaßt, wenn die Farbschnittweite von Blau
ca. 40 Mikron vor der Hauptfarbe Grün liegt, während Rot und Gelb sehr dicht zusammenfallen. Siehe auch die Übersicht ganz unten.
Beim Ronchi-Test sagt die dünne Beugeungslinie zwischen den hellen Streifen und dazwischen die dunkle Fläche etwas über die Glätte einer
Optik aus. GSO-Spiegel haben bei diesem Test eine sehr unruhige Fläche, die durch radiale Polierstriche erzeugt wird.  RC-Systeme leiden oft
unter dieser "Krankheit".     


TAK130-WR_04.jpg
-
Bei diesem Interferogramm, 546.1 nm wave = e-Linie, kann man sofort erkennen, daß ein hoher Strehlwert als Ergebnis herauskommt.      

TAK130-WR_05.jpg
-
Trotzdem erkennt das Auswertprogramm AtmosFringe immer noch die Wellenfront-Deformation, die jedoch am Himmel durch Seeing und
andere Einflüsse überlagert wird: http://www.amateurastronomie.com/anfang/seeing/index.htm     


TAK130-WR_06.jpg
-
Die perfekte Licht-Energie-Verteilung zeigt dieses Bild. Fehler wie Astigmatismus, Koma und Spherical würde man hier ebenfalls bereits
erkennen am Maximum und den umgebenden BeugungsRingen.    



-
Ohne Artefakte stellt ein synthetischer Ausdruck die Situation dar. Manche Test-Reports beschränken sich auf diese Darstellung.      

TAK130-WR_08.jpg
-
Ein sehr hoher, kaum zu glaubender Strehlwert, der sich aber bereits über das grüne Interferogramm oben angekündigt hatte.       

TAK130-WR_09.jpg
-
In diesem spektralen Interferogramm "verstecken" sich mindestens drei der wichtigen Farben: Blau, Grün und Rot und zugleich die Defokussierung
von Blau (- 39µ) und Rot (+15 µ). Lediglich Rot entspricht nicht exakt der H-Alpha Linie von 656.3 nm wave.       


TAK130-WR_10.jpg
-
Zur gegenseitig sich prüfenden Ermittlung des Sekundären Spektrums über eine a) Schnittweitenmessung mit einer dig. Meßuhr und b) über
die Umrechnung der Power in den Farblängsfehler, siehe die unterste Übersicht.       


TAK130-WR_11.jpg
-
TAK130-WR_12.jpg
-
Das Auge fokussiert auf den Punkt mit dem größten "Schärfe-Eindruck", das je nach Sekundärem Spektrum verschieden sein kann. Bei der
folgenden Übersicht kippen deshalb die Streifen bei Blau nach oben, was bedeutet, daß der blaue Fokus vor Grün liegt und der rote Fokus
hinter Grün liegt.        



-
Verwendet man eine 0.001 digitale Meßuhr, dann orientiert man sich an der mittleren Bezugs-Linie und fokussiert jede Spektral-Farbe extra
und die Abstände an der Meßuhr ab. Das geht mit einer Genauigkeit von ca. 2-3 Mikron. Die Ermittlung über die Defokussierung/Power ist
ähnlich genau.          



-
Und schließlich in Übersicht die Ergebnisse der beiden Verfahren, das Sekundäre Spektrum dieses TOA zu ermitteln und zu vergleichen.          



Zugegeben ist der TOA nicht ganz billig, aber jeden Euro wert, den er gekostet hat.