A043-01 TEC APO Triplet 140-980 Fotografisches und visuell einsetzbares Teleskop

 

Einleitung

Bei der Beurteilung eines Refraktor-Systems kommt es ganz entscheidend darauf an, wofür man das System verwenden bzw.
einsetzen will. Im Zusammenhang mit einem Flattener bzw. Reducer möchte der Astrofotograf ein möglichst großes Bildfeld
mit punktförmiger Sternabbildung bis in die Ecken des Kamera-Sensors. Dabei darf er nicht vergessen, daß die Auflösung des
Kamera-Sensors bei 3 x 3 Pixel für einen feinen/lichtschwachen Stern beträgt. Die Qualität auf der opt. Achse des fotografi-
schen Systems interessiert den Fotograf nur sekundär, weil die wichtigste Information sich auf das Feld außerhalb der opt.
Achse bezieht. Ein Strehlwert nützt in diesem Zusammenhang wenig bis gar nichts.

Ganz anders verhält es sich bei der Beurteilung, ob ein Refraktor z.B. für die Planeten-Beobachtung tauglich ist, also für den
visuellen Einsatz. Dieser findet, anders als bei der Fotografie im achsnahen Bereich der opt. Achse statt, und jetzt wäre der
Strehlwert durch aus ein Qualitäts-Merkmal.

Der hier vorgestellte TEC APO ED Triplet 140/980 hätte zwar auf der Taukappe den Aufdruck "TEC APO 140 ED", er muß trotz-
dem unter die Voll-APO's einsortiert werden. Das Grund-System ist deshalb ein vollwertiger Apochromat. Verwendet man 
dazu den TEC-Flattener, dann hat man bis zu einem Bildwinkel von 4° oder einem Bilddurchmesser von 68.44 mm eine wunder-
bare punktförmige Abbildung, wie im Artificial Sky Test eindeutig bewiesen werden konnte. Wiederum entscheidend sind die
Abstände, die man unbedingt einhalten muß. Der Abstand von der letzten Flattener-Bezugs-Fläche zum Kamera-Sensor
( = Fokus) muß unbedingt mit 85 mm eingehalten werden. Besser wird das Bild in den Ecken sogar, wenn man 1-3 mm weniger
einstellt. Das läßt sich auch über den Strehl beweisen.

Es ist also empfehlenswert, je nach Verwendung eines Refraktors die spezifischen Kriterien anzuwenden!

Der TEC APO + Flattener als "Foto-Maschine"

Mit dem TEC APO Triplet 140-980 möchte er hauptsächlich fotografieren, so der Sternfreund. Ich solle ihm deshalb zunächst die
genaue Position des Flatteners ermitteln: a) die Position des OAZ auf dessen Skala und b) schließlich den Abstand des Flatteners
zum Fokus. So wäre a) die erste Zahl und b) die zweite Zahl. Dabei muß man etwas aufpassen. Die Schnittzeichnung auf diesem
Bild ist leider zu klein. Man kann sich auch auf die letzte Fläche des hinteren Schraubringes beziehen, der hinten auf den
Flattener aufgeschraubt wird, wie ich es gemacht habe. Dann muß man aber jeweils noch 3.5 mm dazu-addieren, damit man den
Abstand von der Flattener-Bezugsfläche zum Fokus bekommt. Das ist ebenfalls auf diesem Bild unten rechts dokumentiert.


TTEC_01.jpg
-
Ein Preis, der einiges an Qualität erwarten läßt. Bei der Lagerung dieser ölgefügten Objektive würde ich diesen Refraktor immer
senkrecht lagern. Das Objektiv ist weitestgehend reflexfrei, wie die Werbung richtig behauptet. Das Diagramm des Sekundären
Spektrum erinnert eher an ein Zwei-Linser ED-System, trotzdem ist es erstaunlich farbrein, wie man im 3. Teil unten sehen kann.

TTEC_02.jpg
-
Bei der Ermittlung der Abstände von
a) die Einheiten auf der OAZ-Skala (dem Abstand Flattener zum vorderen Objektiv) und davon abhängig
b) dem Abstand letzte Fläche Flattener zum Fokus, beginnt man sinnvollerweise mit dem größten Kipp-Winkel. Wenn nämlich
in den Ecken bei 2° Kippwinkel oder 4° Bildwinkel die Punkt-Abbildung meines Artificial Sky Testes dem auf der opt. Achse
entspricht, dann hätte man die richtige Position gefunden. Bei anderen Abständen zeigt dieser Test Koma+Astigmatismus,
aber keine exakt definierten Sternpunkte. Diesen Test kann man auf zwei Arten darstellen, indem man das System TEC APO
vor dem Planspiegel kollimiert und nun die Lichtquelle im Fokus seitlich versetzt. Um den gleichen Betrag würde deshalb die
Abbildung in die entgegengesetzte Richtung wandern. Bei dieser Methode muß aber der Versatz mit einer Genauigkeit von
0.1 mm darstellbar sein, und der künstliche Stern möglichst auf der opt. Achse, was unbedingt einen Teilerwürfel erfordert.
Nimmt man einen dieser Excenter-Einheiten , dann hat man in jedem Fall ein Platz-Problem, sodaß für diesen Fall ein Kreuz-
Tisch aus der Mikroskopie mit Mikrometer-Schrauben die bessere Wahl wäre.

Ich bin in meinem Fall einen anderen Weg gegangen , der leichter zu reproduzieren ist: Bei dieser Kipp-Einheit wird das opt.
System TEC APO + Flattener gemeinsam vor dem Planspiegel verkippt und damit die opt. Achse, sodaß das Lichtbündel eben-
falls verkippt die Situation im Bildfeld darstellt. Man kann über die Verkippung auch die Vignettierung darstellen, bis an
irgendeinem Rand, meist in Nähe des OAZ, das Bündel dann ganz abgeschnitten wird. Über eine Skala kann man den Kipp-
Winkel gut reproduzierbar immer wieder einstellen. Bei der Abstands-Messung Flattener zum Fokus mit dem Foucault-Test
muß man sich überlegen, was die letzte Bezugs-Fläche des Flatteners sein soll. Da die Schnittzeichnung dieses Bildes zu
klein und damit ungenau ist, habe ich gegen den hinteren Flattener-Schraubring gemessen. Da die Bezugs-Fläche des
Flatteners jedoch um 3.5 mm dahinter liegt, muß dieser Betrag dazu addiert werden und stimmt damit überein mit den Angaben
im drittnächsten Bild links oben. Die Einheit auf der OAZ-Skala sollte dann bei 76 Einheiten liegen.


TTEC_03.jpg
-
Wenn also das System scharf-gestellt wurde, dann muß der OAZ 76 Einheiten anzeigen und der Abstand zum Fokus wäre dann
82 mm + 3.5 mm, also der Betrag, der auf der Webseite von TS angegeben ist. Bis max. 3 mm darf der Wert auf der OAZ Skala
größer sein, sodaß sich der Abstand zum Fokus um etwas 3 mm reduziert. Siehe Bild weiter unten.


TTEC_04.jpg
-
Unten rechts eingeblendet die Dicke des Schraubringes mit 2.5 mm und darunter die Anschlags- oder Bezugsfläche auf dem Ende
des Flattener selbst. Wie man sieht bezieht sich die Schnittzeichnung ebenfalls auf die letzte Linsenfläche, damit diese nicht ver-
kratzt werden.


TTEC_05.png
-

Die Wirkung des TEC-Flattners läßt sich hier einschätzen: Während das Grundsystem bereits bei einem Bildwinkel von 1° (untere
Reihe) einen deutlichen Astigmatismus zeigt, der ab 3° Bildwinkel überhand nimmt, bleibt die Abbildung (obere Reihe) bis zur
Vignettierung nahezu perfekt wie auf der opt. Achse, sodaß der Bildwinkel eigentlich noch größer ist mit größer ansteigender
Vignettierung. 

TTEC_06.png
-
Die Diskussion die sich im Hintergrund abspielte, führte zur Untersuchung, wo das Optimum dieser Abstände eigentlich liegt.
Dies läßt sich auf doppelte Weise dokumentieren: Nimmt man statt der 1.Zahl 76E auf der OAZ-Skala die Zahl 79E, dann wird
die Abbildung in den Ecken noch besser, wie die Übersicht zeigt. (Weil aber die Auflösung des Kamera-Sensors mit 3x3 Pixel
wesentlich niedriger ist, als die opt. Auflösung, bemerkt ein Astro-Fotograf diese Feinheiten erst einmal nicht.

Es läßt sich aber folgendes eindeutig festhalten: Das mittlere Bild entspricht den Händlerangaben, der einen Fokus-Abstand
von Flattener-Bezugsfläche zum Fokus mit 85 mm angibt. Das wären also meine gemessenen 82 mm + 3.5 mm, die sich ergeben,
wenn man die vom Hersteller angegebene Bezugsfläche nimmt, die ich für etwas unglücklich halte. Das übernächste Bild TTEC_08.jpg
zeigt aber, daß man im System eine Toleranz von mindestens  3 mm hätte, also ca. 82 mm bis sogar 79 mm Fokus-Abstand.
Anders ausgedrückt, die OAZ-Skala muß bei Scharfstellung mindestens bei 76 Einheit liegen, besser bei 79 E bis 82 E. Weniger
Einheiten zeigt das 1. Bild der folgenden Darstellung. Die Verwirrung entsteht dadurch, weil alle Welt der Überzeugung ist, daß
man den Abstand zwischen 
vorderem Objektiv und dem Flattener beliebig variieren könne. Was aber nach den Regeln des
optischen Designs nicht möglich  ist.


TTEC_07.jpg
-
Durch die Verkippung der Einheit TEC APO + TEC Flattener lassen sich im Bildfeld auch Interferogramme erstellen, und damit
dokumentieren, an welcher Position des Flatteners der Strehlwert am größten ist. Es ergibt sich ein optimaler Bereich, der
umrandet ist. Zugleich zeigt dieser Test, daß man die Abstände möglichst millimeter-genau einhalten sollte. Das Fazit heißt:

Diese Kombination TEC Flattener + TEC Flattener ist bis zum Bildwinkel von 4° beugungs-begrenzt! ! !


Eine völlig andere Sitaution ergibt sich im Bildfeld des Grundsystems ohne Flattener: Ab Bildfeld 2° entsteht heftiger Astigmatismus, 
dewr Strehlwert geht augenblicklich gegen Null.


TTEC_09.jpg

Der TEC APO als "Planeten-Killer"


TTEC_10.jpg
-
Untersucht man das Grundsystem in Richtung visueller Gebrauch, dann lassen sich diese Unterschiede feststellen:
Das Grundsystem ist etwas farbreiner und hinsichtlich Öffnungsfehler besser korrigiert.

TTEC_11.jpg
-
Die Farbsäume beim Sterntest entsprechen dem eines Apochromaten, wobei die Farbschnittweiten sehr nahe beeinander liegen.
Lediglich Rot liegt mit 0.0695 mm hinter Grün, wobei die Wahrnehmung von Rot sehr deutlich reduziert ist.

TTEC_12.jpg
-
Die Auswertung in der Hauptfarbe Grün bei 546.1 nm wave mit einem sehr guten Ergebnis.

TTEC_13.jpg
-
Diese Wellenfront-Darstellung entspricht dem Diagramm des farbabhängigen Öffnungsfehlers.

TTEC_14.jpg
-
und die Energie-Verteilung für die e-Linie (Hauptfarbe Grün)

TTEC_15.png
-
Dazu der Testreport

TTEC_16.jpg
-

Das Sekundäre Spektrum des Grund-Systems

Über die Power der jeweiligen Farb-Interferogramme kann man über die Formel für die Pfeilhöhe (Siehe Kurt Wenske Spiegel-
optik, SuW Taschenbuch 7, 1978) den Farblängsfehler berechnet und schließt in diesem Zusammenhang auch den Gaußfehler
mit ein.

TTEC_17.jpg
-
Die hier ausgewiesene Farbreihheit von 0.9381 (RC_Index-Zahl) entspricht also einem Apochromaten.

TTEC_18.jpg
-
Dazu auch die gemessenen Werte für die Power.

TTEC_19.jpg

Dieser Bericht sollte zweierlei zeigen:

Ein fotografisches System muß man über das Bildfeld beurteilen, also über die Abbildung im Bildfeld

Ein visuell genutztes System muß man über die opt. Achse beurteilen, weil es dort benutzt wird. Nur
dort ist ein Strehlwert auch sinnvoll als Qualitäts-Nachweis.