A102 VIXEN AX 103 S F 825 mm Refraktor als Fotomaschine

Refraktor als Fotomaschine

siehe auch: Vixen Fluorite Apochromat 102/900

In der SuW-Ausgabe vom 16.07.2010 tituliert der Bericht von Stefan Seip, einem der renomiertesten Astrofotografen:
Quote:


Refraktor als Fotomaschine

Stefan Seip
Auf den Namen AX103S hört der neueste Refraktor des japanischen Teleskopherstellers Vixen. Aufhorchen sollten alle Astrofotografen, denn dieser Apochromat
mit 103 Millimeter Öffnung und einem Öffnungsverhältnis von 8,0 ist als Fotomaschine konzipiert.


Damit wird ganz deutlich gemacht, daß dieser äußerst farbreine Voll-APO eigentlich für die Astrofotografie konzipiert worden ist, obwohl die opt. Daten
ebenso die Kriterien eines sehr farbreinen Apochromaten erfüllen würden. Bis zu einem Bildwinkel von 2° , bzw. Verkippung von 1.0° bzw. 28.8 mm Bild-
feld-Durchmesser ist dieses System frei von Vignettierung. In den Händen eines Stefan Seip dürften damit brilliante Aufnahmen entstehen. Vielleicht finde
ich noch welche im WEB.

Große Unterschiede bestehen bei der Beurteilung von fotografischen gegenüber visuell genutzten Systemen. Bei den fotografischen Systemen sollte die Abbildung der
Sternpünktchen bis in die Ecken des Kamera-Chips möglichst klein und rund sein bis zu einer Größe von 4-3 Mikron. Dabei "verschmieren" sich während einer Aufnahme-
Zeit von 10 Minuten seeingbedingt z.B. ein eventuell vorhandener Astigmatismus, sodaß am Ende die eigentlich kreuzförmige Abbildung eines Sterns bei Astigmatismus
das Seeing dies zu einem runden Punkt werden läßt. Eine eventuell vorhandene Über- oder Unterkorrektur verlagert einen Teil der Lichtenergie in den ersten
Beugungsring (was im übrigen bei obstruierten RC-Systemen ohnehin passiert) und "bläst" lediglich den Durchmesser des Sternpünktchen etwas auf, nur wird das
in den seltensten Fällen von einem Astrofotografen nachgemessen. In der Summe kommen bei einer "Fotomaschine" selbst bei einem Strehl von ca. 0.50 immer noch
gute Bilder heraus, weil die Nachvergrößerung durch Okulare entfällt. Der Strehlwert als Kriterium für eine gute "Fotomaschine" verliert deshalb an Bedeutung, weil
dieser Wert immer nur auf der opt. Achse ermittelt wird und nie im Bild-Feld. Dort wird die Qualität allenfalls über Spot-Diagramme nachgewiesen, aber nie über
die ohnehin variablen Strehl-Werte, je nach Einfalls-Winkel. Zumindest wird unten der Versuch gemacht, die u.a. strehlmäßig zu erfassen.

Anders ist die Situation bei visuell genutzten Teleskopen: Dieser Refraktor liefert für den visuellen Beobachter sehr gute Strehl-Werte auf der Achse ab und verfügt
über die Farbreinheit eines Super-APO's. Ähnlich wie der TOA von Takahashi läßt sich dieses System über die erste Linse perfekt zentrieren. Dazu sind - aus gutem
Grund übrigens - die sechs Zentrierschrauben hinter einem Ring versteckt. Am Stern ist der Versuch einer Zentrierung zu ungenau. Hier wird folgende etwas
umständliche Zentrier-Möglichkeit erwähnt: Zit: "... mit Hilfe seines Interferometers zentrieren lassen müssen (vorher im grünen Licht nur um beugungsbegrenzt,
nun irgendwo bei 0.95 (genauere Zahlen folgen sicher noch in einem Bericht" Zit. Ende. Eine Zentrierung über einen Interferometer stelle ich mir nicht nur sehr
umständlich vor, sie müßte genaugenommen mit einem Twyman-Green Interferometer exakt auf der Achse erfolgen und verlangt die wiederkehrende Nachzentrierung
des Teleskopes vor dem Planspiegel. Mit einem künstlichen Stern auf der opt. Achse viel zeitsparender mit dem gleichen Ergebnis.

Über die Zentrierschrauben der ersten Linse lassen sich also tatsächlich Coma und sogar Astigmatismus beseitigen. Man wird bei einem fotografischen System also keine
ausufernde "Fachdiskussion" lostreten müssen. Es reicht völlig, wenn man ein paar beeindruckende Fotos abliefert. Dazu sind allerdings die wortgewaltigen "Strategen"
selten in der Lage.

AX103S_01.jpg

Was die Spotdiagramme auf der linken Bildhälfte, das wären meine Artificial Sky Aufnahmen unter Höchstvergrößerung (f/2 in mm) der Gegenbeweis auf der rechten Bildhälfte. Und damit wird offenkundig, daß dieses System im Feld bis zu einem Durchmesser von 30 mm feine Sternpünktchen abliefern muß. Die Lichtquelle mit den
3-5 Mikron großen Pinholes wird aus der opt. Achse in Schritten von 10, 20, und 30 mm versetzt, ohne dabei das Teleskop selbst zu bewegen. Eine Lichtquelle mit
Abstand 15 mm wird auf der gegenüberliegenden Seite abgebildet. Die dadurch entstehenden Restfehler, Astigmatismus und Coma, sind fotografisch kaum wahrzu-
nehmen. Zu den Spotdiagrammen links hat dieser Test also eine gute Entsprechung. Nicht überprüft habe ich, ob es signifikante Auswirkungen gibt, wenn man die
Position der 4. Linse im Okular-Auszug bewegt. Möglicherweise läßt sich der Öffnungsfehler auch über den Abstand der 1. Linse beeinflussen. Für derartige Unter-
suchungen liegt hier noch ein drittes derartiges Teleskop. Im Falle des TS Flat 2, der eine sehr gute Bildqualität außerhalb der opt. Achse erzeugt bei vielen
Refraktoren, ist die richtige Position im Strahlengang erforderlich. Nach dieser Logik müßte es im Falle des AX 103 S auch eine optimale Position für die 4. Linse geben.

AX103S_02.jpg

Spätestens beim Foucault-Test fällt auf, daß dieser APO die Farbreinheit eines Super-APO's hat und einen äußerst geringen Gaußfehler. Das ist der farbabhängige
Öffnungsfehler. Rot reagiert unterkorrigiert, Grün ist perfekt und Blau überkorrigiert. Bei diesem Refraktor liegt eine ganz schwache Unterkorrektur über dem System,
bei der ich noch nicht weiß, ob sie über den Linsenabstand der 1. oder 4. Linse beeinflußt werden kann. Wenn man die Systemdaten in ZEMAX einspielen könnte, wüßte
man das am schnellsten. Das Foucault-Bild des Vixen Fluorite Apochromat 102/900 - FL102S zum Vergleich.

Den Farblängsfehler dieses Refraktors habe ich auf zwei Arten ermittelt: Der obere RC_Indexwert entstand über eine Differenzmessung mit Hilfe einer digitalen Meßuhr
0.001, der untere RC_Indexwert über die Interferogramme, bei auf Grün fokussiertem System. Die Abweichung der farbigen Interferogramme (Power) läßt sich auf die Schnittweiten-Differenz der Spektralfarben zurückrechnen. In der Regel liefert das zweite Verfahren die "besseren" Ergebnisse ab, was diesmal nicht zutraf. Man darf
aber nicht vergessen, daß die "Unschärfe" im Mikron-Bereich zunimmt.

AX103S_03.jpg

Auf der Basis dieser Farb-IGramme entstand also der obere zurückgerechnete RC_Index-Wert. Die APO-Definition von Thomas Back wäre für dieses Teleskop
erfüllt. Der Strehlwert ist selbst bei Rot sehr hoch. http://www.astro-foren.de/showthread.php?t=7720 Eine ideale Bedingung für die H-alpha Fotografie. Der
Gaußfehler spielt im Bereich von unter PV L/8, was man den Foucault-Bildern sofort ansehen kann.

AX103S_04.jpg

Zwischen dem IST-Wert und dem Soll-Wert des Interferogrammes in der Hauptfarbe Grün bei 546.1 nm wave = e-Linie ist also kein großer Unterschied mehr.

AX103S_05.jpg

Die Rest-Fehler sind also weder visuell und schon gar nicht fotografisch wahrnehmbar.

AX103S_06.jpg

Die PSF-Darstellung (point spread function = Energieverteilung) liefert ein nahezu perfektes Bild ab.

AX103S_07.png

ebenso die Kontrast-Übertragungs-Funktion.

AX103S_08.jpg

Wer ein System optisch vermißt, tut dies vornehmlich auf der opt. Achse. Damit bleibt das für die Fotografie wichtige Bild-Feld zunächst unberücksichtigt.
Aus diesem Grund verkippe ich den Refraktor in 0.2°-Schritten vor dem Planspiegel, um die Auswirkung auf die Abbildung im Feld untersuchen zu können.
Diese zweite Methode liefert nicht ganz deckungsgleiche Ergebnisse ab, wie der Versatz der Lichtquelle im Fokus eines Systems. Trotzdem sind bei diesem
Test mehrere Aspekte interessant:
- An der Farbsituation beim Foucault-Test ändert sich nichts - ein Farbquerfehler kann also weitestgehend ausgeschlossen werden.
- die Vignettierung setzt spät bei einem Kippwinkel zwischen 1.0° bis 1.2° ein: Das ist die seitliche Abschattung rechts.
- wie bei allen Refraktor-Systemen nimmt Astigmatismus und Achskoma im Feld zu, wie man an den Interferogrammen sieht.
- die punktförmige Abbildung im Feld wird also überlagert von Astigmatismus und es entstehen kleine Kreuze.
- seeing-bedingt wird dieser Sachverhalt "verschmiert" über eine 10-minütige Aufnahmedauer und stört die prinzipiell runde Sternabbildung nicht.
- Dieser APO ist gleichermaßen eine Fotomaschine wie ein visuelles Highlight und preislich ansprechend.

AX103S_09.jpg

Dieser Refraktor dürfte ca. 2 Jahre auf dem Markt sein, sodaß es vermutlich jede Menge anderer Berichte dazu gibt.

http://www.astrophotoclub.com/seiun/sankou.htm
http://imageshack.us/f/191/110507m101.jpg/

Vixen AX103S Optical Tube Assembly

http://www.skypoint.it/ddl/allegati/AP-4034.pdf
http://www.vixenoptics.com/refractors/ax103.html
http://www.teleskop- express.de/shop/product_info.php/info/p2827_Vixen-103-825mm-Triplet-Vollapo-mit-Bildfeld-Ebnung---dual-Auszu.html
http://www.cloudynights.com/ubbthreads/showflat.php/Cat/0/Number/3007617/Main/3003413

--------------------------------------

Lieber Gerrit,

Wie lange ich auf bestimmte Teleskope warten muß, hängt manchmal von seltsamen Zufällen ab. In diesem Fall wurden mir gleich
drei dieser Teleskope in die Hand gespielt, an denen ich meinen "Forscherdrang" ausleben konnte. Nun bin ich bekanntermaßen
- leider - kein Astrofotograf, weshalb mir bestimmte Feinheiten, wie das Nyquist-Theorem nur aus dem WEB bekannt sind.
Vor ca. 30 Jahren war man mit einem Sternpünktchen-Durchmesser von 30 Mikron noch voll zufrieden. Die von mir gebaute
Newton+Korrektor Kamera mit hyperbolischen Flächen auf Hauptspiegel und letzter Korrektorfläche brachte einen Durchmesser
von 10 Mikron. Heutige Kameras haben noch kleinere Durchmesser der Sternscheibchen, aktuelle Beispiele fehlen mir derzeit.

Dem gegenüber stehen Astro-Aufnahmen gängiger RC-Systeme, die über eine deutliche Obstruktion verfügte. Als das folgende
Bild entstand, hatte das System noch eine deutliche Achskoma, mein typisches Bild beim Artificial Sky Test, siehe Bild weiter oben,
war noch überhaupt nicht zu erkennen, nach der Zentrierung aber schon. Der Lösung des Rätsels versuchte ich in dem folgenden
Beitrag näher zu kommen: http://www.astro-foren.de/showthread.php?p=54906#post54906
Siehe besonders: http://rohr.aiax.de/@SV_D.png
Da ich weiß aus diesen Vergleichen, daß selbst ein Strehlwert auf der Achse von ca. 0.50 hauptsächlich wegen Überkorrektur
und Astigmatismus im Bereich PV L/3 noch zu ansprechenden Bildern führt, braucht man für die Beurteilung von "Foto-Maschinen"
offenbar andere Kriterien. Und die müßten nach meiner Vorstellung etwa so aussehen:
- Mich würde zuallererst der Sternscheiben-Durchmesser in den Ecken bei lichtschwachen Sternen interessieren,
eventuell in Zusammenhang mit Doppelsternen, deren Abstände man kennt, der Pixelgröße in Mikron etc.
- zweitens wüßte ich gerne den Unterschied zwischen obstruierten RC-Systemen und Refraktoren am konkreten Astro-Foto
hinsichtlich des Sternscheibchen-Durchmesser. Also die Frage, um wieviel "bläst" die Obstruktion das Sternscheibchen auf.
Theoretisch läßt sich das zwar berechnen, die Praxis ist mir aber lieber.
- drittens scheinen mir lediglich die systembedingte Koma eines Newtons oder ein Refraktor ohne Flattner einen größeren
Einfluss auf die Abbildung zu haben, nicht so ein Zentrierfehler, wie in der folgenden Aufnahme, oder ein Astigmatismus kleiner PV L/2

Viele der luftleeren Theorie-Diskussionen läßt sich nur sicher von den Astro-Fotografen selbst beantworten. Und die sind a) dünn gesäht
und haben b) nicht meine Interessen.

Astro-Fotografie

RC-Systeme: Zwischen den Stühlen - visuelle / fotografische Beurteilung
10 inch GSO RC Wieviel Strehl braucht ein Astro-Objektiv ? ATIK4000-techn.Daten
10" GSO RC - Auflösung im Feld perfekt
ATIK 4000-Auflösung und Artificial Sky Test
Wieviel Astigmatismus verträgt die Astrofotografie
LOMO APO + TS-Flattner , Refraktor: Coma+Astigm im Feld

----------------------------------

Lieber Gerrit,

hier eine kurze Antwort:

Die Astro-Fotos sind nie von mir, sie werden mir nur zur Beurteilung geschickt. Wenn ich Glück habe, erfahre ich die Aufnahmedaten und ganz selten den Kamera-Typ bzw. deren Chip mit Pixel-Größe etc.

Meine eigenen Testbilder entstehen seit Jahren mit einer Olympus Kamera. Seit mindetens 5 Jahren eine Olympus Camedia C5050, sowie deren techn. Möglichkeiten, die exakt für meine Bedürfnisse ausgelegt sind.

Olympus.jpg

Aus meinem Artificial-Sky Test kann ich unter Höchstvergrößerung (Fokus/2) die Auflösung eines Teleskopes berechnen, was in den meisten Fällen mit der
Formel übereinstimmt. Das gilt für die Darstellung auf der opt. Achse. Interessant ist aber auch die Anwendung im Feld, weil damit die Fehler eines Systems
im Feld sichtbar gemacht werden können.
Dies aber unter den gleichen Vergrößerungs-Bedingungen wie auf der Achse, und das stimmt für die Fotografie natürlich nicht. Da hilft dann nur der Vergleich
weiter, meine Bilder zu vergleichen mit Feldaufnahmen, die man mit dem gleichen Teleskop unter gleichen Fehler-Einflüssen sowohl am Himmel wie auf der opt.
Bank gewinnt. Das wiederum ist sehr, sehr selten.

-------------------------------------------

Artificial Sky - Übersicht: Artificial SkyBildfeld Test über 20 mm opt. Target/Pinhole flat
Rayleigh Funktions-Kurve, Strehlwert und Obstruktion

. . . nochmals laut vor mich hingedacht:

Mein Künstlicher Sternhimmel besteht aus Pinholes mit Durchmesser von 3-5 Mikron, sogar welche mit nur 1 Mikron, also rein physikalisch weit unter der
Pixel-Größe heutiger Kamera-Chips. (Ich habe mir das unterm Mikroskop angeschaut und vermessen) Diese Art Lichtquelle schicke ich zweimal durch eine
Optik und schaue mir in der Gesamtsumme das davon erzeugte Bild unter Höchstvergrößerung an: Also Fokus/2-fach.

Es entsteht also anders als bei einer Kamera ein nachvergrößertes Bild, und wegen der Kleinheit der Pinholes nicht nur das Maximum sondern auch noch
wunderbare Beugungsringe, deren erster sich sehr gut zur Fehlerbeurteilung taugt - eben durch die hohe Vergrößerung.

Hat ein Refraktor sphärische Aberration in Form von Über- oder Unterkorrektur, so sieht man das über einen zu deutlich ausgeprägten 1. Beugungs-Ring.
Der gleiche Effekt entsteht bei obstruierten Systemen, auch da wird Energie in die Beugungeringe verschoben, je nach Größe der Obstruktion siehe unten.
Wenn dieser Beugungsring kreuzförmig durchbrochen ist, so liegt Astigmatismus in unterschiedlicher Größe vor, abhängig davon, wie deutlich dieser Effekt
zu sehen ist.
Ist dieser BeugungsRing nicht rotations-symmetrisch, so kann man Koma erkennen, und danach auch zentrieren, auch wenn man nicht exakt auf der Achse ist.
Bei katadioptrischen Systemen muß man hingegen vorsichtig sein in der Beurteilung von Koma, die müssen exakt auf der Achse zentriert werden.

Der große Vorteil dieser aus vielen Pinholes bestehenden Lichtquelle ist der Umstand, daß ich sowohl den Pinhole-Durchmesser, wie auch den Abstand genau
kenne, und damit aus dieser Fotografie, bzw. dem Bild auf der Fotografie, die Auflösung ausrechnen kann. Allerdings ist das die Abbildung durch das
Okular hindurch, wie es auch das Auge bekommen würde. Eine direkte Fotografie derart, daß der Kamera-Chip das Bild aufnehmen würde, gibt es also nicht.
Da würde jegliche Information genauso verschwinden, wie bei der Fokal-Fotografie bei Astro-Kameras.

Wenn also die Pixelgröße um den Betrag von 8 Mikron spielt, dann würde die untere Dreiergruppe (Mitte-rechts mit 8 Mikron) kaum aufgelöst, und Fehler,
die den Bereich von 8 Mikron nicht übersteigen, ebenfalls nicht. Der Chip einer Kamera sieht also aus physikalischen Gründen Fehler nicht, die erst über die
max. Nachvergrößerung gesehen werden können. Ich bin also weit unterhalb der Diskussion um die Sättigung von Pixeln etc. bei der aktuellen Astro-
fotografie.
Ich sehe also auf der opt. Bank beim Artificial Sky Test bei bestem Seeing über die Nachvergrößerung die opt. Fehler einer Kamera, die der
Kamera-Chip nie zu sehen kriegt.

QTest07.jpg

-----------------------------------

Beim dritten Vixen AX103S interessierte mich, ob der Abstand der 4. Linse im Okularauszug eine entscheidende Rolle spielt. Zunächst ist der Abstand sehr gutmütig,
aber es gäbe nach meinen Versuchen trotzdem folgende optimale Abstände:

AX103S_14.jpg

Bei diesen Abständen ergibt sich folgender Eindruck für die Vignettierung, obere Reihe, und die daraus resultierende Abbildung beim Artificial Sky Test untere Reihe.
Bei Durchmesser 30 mm nimmt der system-bedingte Astigmatismus zu, was man sieht, wenn man den Gamma-Wert "hochzieht". Die Aufnahmen sind bei 550 nm wave
gemacht, um andere störende Farbeffekte auszuschließen.

Die hier über den Artificial Sky Test gezeigte optimale Auflösung, wird von einem Kamera-Chip in der Regel gar nicht genutzt. Zumindest meine Bilder legen diesen
Schluß nahe.

AX103S_13.jpg

--------------------------------------------

Zum 10-inch AOM RC-System hatte ich doch weiter oben ein Bild vor und nach der Zentrierung.

AX103S_12.jpg

Dazu passend bekam ich heute zwei Roh-Bilder, die links (Ausschnitt aus der Bildmitte) den Zustand vor der Zentrierung und rechts den Zustand nach der Zentrierung
zeigen. Mal vorausgesetzt, die Aufnahmen entstanden unter exakt den gleichen Bedingungen, dan würde man rechts in den jeweils eingezeichneten gelben Rechtecken
kleinere Sterndurchmesser erkennen können, die man aber nur bemerkt, wenn man ganz genau hinschaut. Daraus schließe ich daß die Astrofotografie sehr gutmütig auf
optische Fehler reagiert.


Zentrierung.jpg

Die Pixel-Größe nach unterer Tabelle wäre 6.05 im Quadrat. Das wäre ziemlich genau die theoretische Größe der Kamera-Auflösung bei 2 000 mm Brennweite und
0.0055 Abstand im Fokus. Für die Sternabbildung in diesem Beispiel sind aber wesentlich mehr Pixel zu sehen, auch bei engen Doppelsternen. Der Einfluß vom Seeing
läßt sich in diesem Fall nur abschätzen.

http://qhyccd.com/QHY10.html

Kamera_QHY10.jpg

 

You have no rights to post comments