A096 LOMO Super APO 80-480 im Feld

LOMO Super APO 80/480 im Feld siehe auch LOMO Super APO Triplet 80/480 + TS-Flattner


Der Super APO von LOMO ist sehr farbrein, bezieht man das Attribut "Super" auf die Farbreinheit. Zumindest der Farblängsfehler ist minimal.
Da aber für die Astrofotografen besonders das Bildfeld wichtig ist, wäre die Situation dort ebenfalls interessant mit der Frage, braucht man
einen Flattner bzw. Feld-Korrektor oder nicht. Zusammen mit den Einflüssen von Seeing bei Langzeit-Belichtungen sollte ein Felddurchmesser
von ca. 20 mm noch brauchbare Bilder abliefern, wenngleich bei einem Bildwinkel von 2x0.6° = ca. 10 mm Astigmatismus als Fehler im Feld
zunehmend deutlicher zu sehen ist - allerdings erst einmal im Labor, bei 10 min. Belichtungszeit könnte man davon nichts sehen in der Praxis.

Hinsichtlich der opt. Daten ist dieses 480 mm System in einem Bereich, in dem viele schöne Feldaufnahmen entstanden sind. Das System wäre also noch
klein und handlich für eine Astro-Kamera. Eine Serien-Nummer zur Identifikation findet man bei LOMO immer, bei China-Produkten nie.

LOMO_SAPO_01.jpg

Eine Rest-Chromasie-Indexzahl von 0.1908 erreichen nicht viele Apochromaten, weshalb der Begriff "Super APO" durchaus berechtigt ist.

LOMO_SAPO_02.jpg

Die sichelförmige Farbverteilung, blau links außen und rechts innen, gelb umgekehrt, zeigt die typische Farbverteilung eines Apochromaten und ist ein Hinweis, daß
der Gaußfehler ähnlich groß wie der Farblängsfehler ist. Einen signifikanten Öffnungsfehler hat das System nicht, was einen hohen Strehlwert auf der opt. Achse
erwarten läßt. Anmerkung zum folgenden Bild: Aus Platzgründen sind die intra-/extrafokalen Sternscheibchen verkleinert, nicht jedoch das Fokus-Bild mit der
Orginalauflösung von 1280 x 960 Pixel. Damit läßt sich die Abbildung meiner 20 Mikron großen Pinhole ebenfalls zeigen. Die Testanordnung in Autokollimation, sog.
Doppelpaß, verdoppelt die rechnerische Vergrößerung. Beim Artificial Sky Test weiter unten sind die Pinholes 3-5 Mikron im Durchmesser bei einer max. Vergrößerung
von Brennweite/2. Das zeigt opt. Fehler in aller Deutlichkeit.

LOMO_SAPO_11.jpg

Das bei 532 nm wave erstellt erste Interferogramm unterstreicht die Qualität.

LOMO_SAPO_03.jpg

Dazu die Wellenfront-Darstellung

LOMO_SAPO_04.jpg

Die EnergieVerteilung Point Spread Function genannt

LOMO_SAPO_05.png

Die Modulations Transfer Function aus der sich nicht, wie behauptet, der Bildfeldradius ermitteln läßt

LOMO_SAPO_06.jpg

und schließlich das Strehlergebnis, das für eine Feld-Untersuchung von eher untergeordneter Bedeutung ist

LOMO_SAPO_07.jpg

Die theoretische Auflösung liegt bei 1.73" arcsec. Über die Fotografie kommt man auf den gleichen Wert, wenn man aus der Dreiergruppe
über die Tangensfunktion bei 4 Mikron die Auflösung bestimmt. Also inv tan(0.004/480)
LOMO_SAPO_08.jpg

Deutlich wird bei dieser Übersicht die Überkorrektur bei Blau und die Unterkorrektur bei Rot. Dieser Umstand variiert bei den verschiedenen Herstellern.
Aus diesen Werten kann man den Poly-Strehl für das visuelle Spektrum auf der opt. Achse berechnen. Die Situation im Feld ist erheblich komplizierter,
wobei dort weniger ein hoher Strehl interessiert.

LOMO_SAPO_09.jpg

Für die visuelle Nutzung eines derartigen Objektivs ist die Abbildung auf der Achse wichtig und damit zusammenhängend eine möglichst hohe Nachvergrößerung des Bildes
im Fokus. Bei fotografischer Nutzung entfällt eine Nachvergrößerung, die Pixel-Größe der Kamera und das Seeing über 10 min. Belichtungszeit reduzieren die mögliche
Auflösung durchaus um den Faktor 3 und mehr und machen eine Reihe von Fehlern einfach unsichtbar. Wenn also Wert auf perfekte Abbildung im Bildfeld gelegt wird, der
sollte sich mit dem TS FLAT 2 mit dem richtigen Fokus-Abstand anfreunden.

LOMO_SAPO_10.png