A081 TOA 150-1100 - ein Sahnestückchen

TOA 150/1100 - ein "Sahnestückchen"

Das "Geschoss" ist nicht ganz billig, aber der TOA 150/1100 kann als "Sahnestückchen" bezeichnet werden. Auch die mechanischen Teile sind fachlich
exakt ausgeführt, wie man es von Takahashi erwarten kann. Weiter unten geht es noch einmal um die Poly-Strehl-Diskussion, die eher etwas für
hitzige Stammtisch-Diskussionen ist, für die Praxis von eher untergeordneter Bedeutung.

Nicht alle Tage landet der TOA 150 auf meiner optischen Bank, den TOA 130 hatten wir hier schon öfter. Im Tubus-Aufbau gleicht er dem kleineren Bruder, die
feinen Unterschiede wird man nur vom Hersteller selbst erfahren.

TOA150_01.jpg

Bei 532 nm wave (also zwischen 546.1 nm = e-Linie und 510 nm wave = Optimum beim Nachtsehen) liegt der Strehl bei ca. 0.99, was eigentlich ausreichen sollte.

TOA150_02.jpg

3D-Darstellung der ankommenden Wellentfront-Deformation

TOA150_03.jpg

die Kontrast-Übertragungs-Funktion

TOA150_04.jpg

und die Energie-Verteilung PSF genannt

TOA150_05.png

ein Vergleich zwischen IST- und IDEAL-Interferogramm: Dieses leichte Abkippen der Streifen, in der Mitte gut zu sehen, sorgt bereits für eine Unschärfe, wenn
man exakt den Farblängsfehler vermessen will: Bei exakt geraden Interferenzlinien, stellt man den mittleren Streifen parallel zu einer Referenz-Linie. In diesem
Fall folgt man der Rand-Mitte-Rand-Bedingung, wie sie bei Über- oder Unterkorrektur vorkommt. Und dann ist der gleichmäßige Abstand zur weißen Linie nicht
immer exakt zu treffen. Siehe auch diese IGramme und ihre Referenz-Linie jeweils in der Mitte: http://rohr.aiax.de/TOA150_14.jpg

TOA150_06.jpg

und schließlich, fokussiert auf diese Farbe, der Strehlwert.

TOA150_07.jpg

Über zwei Arten kann man den Farblängsfehler ermitteltn: a) über die Streifen-Messung mit einer digitalen Meßuhr in der 0.707 Zone. Diese Messung wird bereits
durch Zonen (z.B. hochgezogene Kante) unscharf, funktioniert eigentlich nur richtig, wenn keinerlei Flächenfehler eine Rolle spielen. b) die Umrechnung der
Power in Pfeilhöhen-Differenz ist eine weitere Möglichkeit, den Farblängsfehler zu ermitteln. Auch diese Methode hat eine bestimmte Unschärfe, aber bei dieser
Auswertung fällt der RC_Indexwert etwas besser aus. Der RC_Index-Wert berücksichtig nicht den Gaußfehler, sondern nur die Schnittweiten-Differenz der
Spektral-Farben zueinander. Daraus entstand auch die PolyStrehl-Diskussion, ein Wert, der über Optik-Design-Programme leicht ermittelt werden kann, für die
Meßtechnik eher uninteressant, weil im Computer entworfene Systeme nicht unbedingt identisch sind mit gefertigten Optiken.
In beiden Fällen wurde zunächst kein Glasweg benutzt. Lediglich Violett bzw. die g-Linie mit 435.8 nm wave fällt durch eine etwas kürzer Schnittweite im Vergleich
zum übrigen visuellen Spektrum ins Gewicht. Für die visuelle Beobachtung wird dieser Bereich mit nur 2% gewichtet.

TOA150_08.jpg

TOA150_09.jpg

Ein eindeutiger Qualitätsnachweis wäre die Abbildung des künstlichen Sternhimmels bei Höchstvergrößerung, diesmal mit zwei unterschiedlichen Okularen erstellt.
Für die Fotografie verwendet man am besten den dazugehören Feldkorrektor, weil auch die APO-Refraktoren zunächst mal nur auf der Achse perfekt sind. Würde
man von einer Auflösung von 4 Mikron(Foto) ausgehen, (kleines weißes Rechteck) was immer noch realistisch wäre, dann wäre die Auflösung bei 0.75 arcsec.

TOA150_10.jpg

Die Farbsituation läßt sich am Farbrand beurteilen, der wenig Unterschiede zwischen intra- und extrafokal zeigt. Bei Verwendung eine 26 mm Glasweges in Form eine
90° Zenit-Prismas wäre das Bild noch etwas farbreiner.

TOA150_11.jpg

Noch sensibler wäre der Foucault-Test, was die Darstellung der Farbsituation betrifft. Über einen kurzen Glasweg von 26 mm wäre demnach die Farbreinheit noch etwas besser.
Interessieren würde mich allerdings, wie weit man in der Praxis diese Unterschiede wahrnimmt. Ein längerer Glasweg "dreht" das Spektrum allerdings wieder um und verschlechtert
dann den Farbeindruck. Der Foucault-Test ist auch ein Hinweis für ein Gaußfehler-freies System. Nimmt man dieses mit ZEMAX simulierte Beispiel eines Gaußfehlers
(=chromatische Aberration) das im kurzen Spektrum über-, im langen Spektrum unterkorrigiert ist, dann verteilen sich beim Foucault-Test die Farben sichelförmig:

Es korrespondiert eine Farbsichel links außen mit rechts innen und rechts außen mit links innen. Im Beispiel des TOA 150 kommt es lediglich zu einer Trennung
der Farben, was soviel heißt, daß kein erkennbarer Gaußfehler diese Sichelform verursacht. Auch bei den Achromaten hat man einen ähnlichen Effekt. Auch da
ist im Vergleich zum Farblängsfehler der Gaußfehler verschwindend klein.

TOA150_12.jpg

Bei den Diskussionen um den Poly-Strehl spielt die Gewichtung der einzelnen Spektral-Farben, bezogen auf ein durchschnittliches menschliches Auge eine Rolle. Diese Gewichtung wäre
zusätzlich in Tag- und Nachsehen zu differenzieren. Dabei stellt sich aber immer die Frage nach dem tatsächlichen Informations-Gewinn für die Praxis, und den halte ich eher für gering.
Die in der Quelle gefundene Tabelle listet einen Auszug aus der DIN 5031-3 für das Tagsehen auf, für das Nachsehen habe ich keine Angaben gefunden, die Gauß-Kurve wird ähnlich
verteilt sein, jeweils mit der Verschiebung nach 510 nm wave als optimale Empfindlichkeit.

TOA150_13.jpg

Diese Strehlwerten drücken die tatsächlichen Werte des aktuellen Objektives aus, während in der Übersicht ganz unten die Fertigungs-Restfehler herausgerechnet worden sind.
Daraus ergeben sich geringfügige Unterschiede. In all den wichtigsten Spektralbereichen zeichnet sich der TOA 150 durch hohe Strehlwerte aus, wobei der Gaußfehler bei Blau und
Rot nahezu gegen Null geht, also praktisch Gaußfehler-frei ist. Die Optik wurde auf Grün fokussiert, wie das ein Beobachter am Stern auch machen würde. Aus diesem Blick-winkel
entstehen die Differenzen hinsichtlich des Farblängsfehlers, was eine Verkippung der Streifen nach ober (kürzere Schnittweite) und nach unten (längere Schnittweite) mit sich bringt.
Bereits die leichte Streifenverkippung mitte-rechts ab Grün bis Rot verursacht eine leichte Unschärfe bei der exakten Schnittweiten-Differenz-Messung.

TOA150_14.jpg

In die folgende Übersicht wurde die durchschnittliche spektrale Empfindlichkeit des menschlichen Auges über die Streifenbreite berücksichtigt und unten angegeben. Die Prozentzahlen
kann man der oberen Tabelle entnehmen. Damit liegt der Schwerpunkt im gelb-grünen Bereich, sodaß eine Strehl-Aussage für Grün eigentlich völlig ausreichend wäre und die PolyStrehl-
Diskussion etwas konterkarriert. Würde man auf das Nachtsehen abheben, so wäre der blaugrüne Bereicht etwas gewichtiger und die Sache wird noch unübersichtlicher, aber nicht
gerade informativer. Für gewöhnlich nimmt man einen Refraktor für die Tag- und Nacht-Beobachtung. Interessant bei dem TOA 150 ist der hohe Strehlwert im roten Spektrum, was
möglicherweise für die Verwendung des Refraktors für die H-alpha-Fotografie vorgesehen ist. Ein Beurteilung allein über die RC_Indexzahl ist also genauso einseitig, wie der Versuch,
den Poly-Strehlwert zu ermitteln. Der Versuch einer Standardisierung schränkt prinzipiell den Blickwinkel auf eine Optik ein, die offenbar für viele Anwendungen konzipiert worden ist.

Die schwarz-eingefärbten Strehlwerte hat das Objektiv, wenn man auf die jeweilige Farbe fokussiert. Die weißlichen Werte geben den Strehlwert an aus der Fokuslage von Grün, deshalb muß hier die Power berücksichtigt werden als Ausdruck des Farblängsfehlers und ist damit strehlmindernd.

Fraunhofer'sche Spektral-Linien im sichtbaren Teil des Spektrums, Tafel A, Tafel B, Tafel C

TOA150_15.jpg

Die Thomas Back APO-Definition wird in jedem Fall erfüllt, besonders im roten Spektrum, was man nicht für jeden APO sagen kann.

Back-APO-Def.jpg

 

You have no rights to post comments