A074 Takahashi FS 102-820 Schnittweiten-Diff

Takahashi FS 102/820

Ein schlimmes Schicksal hatte dieser Edel-APO erlitten: Nicht nur, daß er ins Spüli-Becken gefallen war, hatte ein gemeiner Mensch
das Tubus-Gewinde so verformt, daß sich das Objektiv nicht mehr aufschrauben ließ, und als dies wieder funktioniert, weigerte sich
die Taukappe ebenfalls, weil eine deutliche Druckstelle auch dieses Gewinde stark in Mitleidenschaft gezogen hatte. Es dauerte einige
Zeit, bis auch dieses Gewinde wieder rund war.

Das Bad im Spüli-Becken hatte bei den Innenflächen häßliche Spuren hinterlassen, sodaß man diesen Zweilinser auseinandernehmen mußte. Der ersten Konvex-Linse
sind auf der Innenseite die Distanz-Plättchen angeklebt, und man tut gut daran, daran nichts zu ändern. Die zweite Konkav-Linse ist deshalb für die Reinigung innen
und außen weniger kritisch. Und nachdem unter einer 500-Watt Lampe mit Hilfe von Druckluft auch die meisten Fussel das Weite gesucht hatten, erstrahlte das
Objektiv wieder in einem ganz ungewohnten Glanz. Dabei sollte man auch auf Linsen-Markierungen achten, damit man die Orientierung der Linsen zueinander möglichst
beibehält. Auch die um 120° versetzten Druckpunkte sollten am Schluß wieder übereinander liegen, wenn man Astigmatismus vermeiden will. Zum Schluß war es
ein einfacher Schraubring, der diese zwei Linsen in ihrer Fassung hielt. (Was gefährlich ist, wenn allzu flinke Hände sich diesem wertvollen Objektiv nähern wollen.)

FES102Ko_01.jpg

Ein schöner Zusammenhang zwischen den Farbsäumen intra/extrafokal und dem Foucault-Test läßt sich beobachten: Das Sekundäre Spektrum beginnt bei der
Hauptfarbe Grün als der Fokus-Punkt. Gelb liegt mit ca. 16 µ dahinter, gefolgt von Blau mit 27 µ und Rot mit 44 µ. Diese Anordnung führt intrafokal zum violett
eingefärbten Farbsaum und extrafokal zum gelb-grün eingefärbten Farbsaum. Über das Foucault-Bild läßt sich zeigen (in Zusammenhang mit dem Gaußfehler)
aus welchen Zonen dieser Farbeffekt stammt: Bei diesem APO's kommt es deshalb zu einer sichel-förmigen Farbverteilung. Die entsteht deshalb, weil die
Messerschneide etwa in der Mitte des Sekundären Spektrums als "Farb-Linie" auf der opt. Achse geschoben wird und der Ort/Zonen bzw. die Schnittweiten der
einzelnen Spektral-Farben sofort sichtbar werden: Je nach Art, wie die Klinge eingeschoben wird, sieht man auf der einen Seite die blau/rote Farbe, die andere Seite
gegenüber zeigt die beiden anderen Farben. Die sichelförmige Verteilung wird über den farbabhängigen Öffnungsfehler (Gaußfehler) verursacht. Über den Gaußfehler
bekommt man bereits in einer Farbe keinen Schnittpunkt, sondern eine Linie, auf der sich die Strahlen aus den unterschiedlichen Zonen schneiden. Aus dieser
Mischung von Farblängsfehler und Gaußfehler korrespondiert beim Foucault-Test besonders bei vielen APO's mit ausgeprägtem Gaußfehler die äußere blaue Farbsichel
links mit der inneren Farbsichel rechts, während rechts außen Gelb/Grün mit ähnlich mischt wie links innen. Damit läßt sich die Größe des Gaußfehlers etwas ein-
schätzen, je nachdem wie ausgeprägt diese sichelförmige Farbverteilung zu beobachten ist. Damit hätte man ein weiteres Unterscheidungs-Merkmal für einen APO.

FES102Ko_02.jpg

FES102Ko_12.jpg

Bei der Ermittlung der RC-Index-Zahl spielt der Gaußfehler keine Rolle, man mag das als Nachteil sehen. Für die Fein-Differenzierung aller Apochromaten
muß man deshalb den farbabhängigen Öffnungsfehler mit ins Kalkül einbeziehen, da der Gaußfehler zunehmend größeren Einfluß bekommt im Vergleich
zum Farblängsfehler. Dessen Schnittweite kann man auf zwei Arten ermitteln:

A) über die Vermessung mit einer 0.001 Digitalen Meßuhr und B) über die Power-Werte in nm der einzelnen IGramme, wenn der Fokus auf Grün "eingefroren"
wird, als Hauptfarbe und deshalb als Nullpunkt.

Bei A) hat man neben der Luft-Bewegung, das Problem der sphärischen Aberration bei Blau und Rot, da man in diesem Fall über Rand-Mitte-Rand der
mittleren Streifen zu einer Hilfslinie ebenfalls durch die Mitte den genauen Null-Punkt dieser Spektral-Farbe treffen muß. (Siehe weiter unten die Übersicht
der Farb-Interferogramme)
Die Rand-Mitte-Rand-Bedingung ist aber insofern nicht ganz scharf, weil die Streifen eben keine dünne Linien sind, sodaß nur eine Reihenmessung etwas mehr
Sicherheit einführt. Die 0.707 Zone nimmt man deshalb, weil in diesem Bereich die opt. Fläche am größten wäre, bzw. dort die Trennlinie zwischen innen und
außen ist und bei derartigen Diagrammen diese Zone gewählt wird, bei der sich die "Farb-Kurven" möglichst schneiden bzw. kleinsten Abstand haben - für eine
größere/höhere Zone aber auch gute Gründe sprechen. Auch dieser Sachverhalt wird im oberen Foucault-Bild deutlich über die farbliche Trennung ab der
0.707-Zone nach außen.

In einem zweiten Verfahren (B) ermittelt man die Power-Abweichung aller anderen Farben in Abhängigkeit zur Hauptfarbe Grün, und rechnet dies über die
Pfeilhöhen-Formel auf die Schnittweiten-Differenz um. Dieses Ergebnis bezieht sich aber dann logischerweise auf den vollen Durchmesser/Öffnung des
Interferogrammes. Dieser Unterschied ist insofern interessant, wenn es darum geht, wie signifikant man zu unterschiedlichen Ergebnissen kommt, wenn
man den Versuch startet, die Schnittweiten-Differenz in Abhängigkeit zur jeweiligen Zone zu messen. Dieses Ergebnis würde ja dann mit der Schärfen-
Tiefe verglichen und sollte zu signifikanten Differenzen der RC-Indexzahl führen, wenn man das folgende Diagramm und dessen Sekundäres Spektrum betrachtet.
Siehe: http://www.astro-foren.de/showthread.php?p=39438#post39438 und diese Übersicht: Je nach Zone müßten andere Ergebnisse zu messen sein,
was aber bei diesem aktuellen FS 102 Zweilinser kaum signifikant ausfällt. Man würde nämlich dann höchst unterschiedliche RC-Indexzahlen bekommen.

@APOVergl01.jpg

http://www.astro-foren.de/showthread.php?p=33209#post33209 Vor über drei Jahren hatte ich bei einem baugleichen APO diese Untersuchung gemacht: Im Vergleich
mit der Schnittweiten-Situation ist der heutige Takahashi-APO dem damaligen APO ähnlicher als dem von Takahashi veröffentlichten Diagramm, sodaß diese als Nachweis
des Sekundären Spektrums eines APO's eher untauglich sind bzw. eine Luftnummer in der Diskussion.

FS-102-Diagramm.jpg

In Fortführung dieser Idee unterschiedlicher Farbschnittweiten aus unterschiedlichen Zonen wäre folgende Auswertung das Ergebnisses mit der digitalen Meßuhr . . .

FES102Ko_03.jpg

während dieses bessere Ergebnis über die Umrechnung der Power/Schnittweiten-Differenz ermittelt worden ist. Die Ergebnisse liegen erstaunlich oft dicht
bei-einander, sodaß es sich eher um Unschärfen aus beiden Verfahren handeln kann, als um signifikante Unterschiede. Ein Verfahren, die oberen Diagramme
meßtechnisch exakt darzustellen, sehe ich deshalb als sehr schwierig an.

FES102Ko_04.jpg

Zunächst abhängig von der Wellenlänge der heutigen 532 nm wave Laser-Module ein erstes Interferogramm und dessen Auswertung, die bereits deutlich ein
nahezu perfektes kleines Objektiv erwarten läßt.

FES102Ko_05.jpg

Das daraus gewonnene PSF-Diagramm korrespondiert sehr gut mit dem oberen Ergebnis des Artificial Sky Testes, der ebenfall deutlich das Maximum zeigt,
ohne auffällige Beugungsringe, wie man sie von sphärischer Aberration oder bei Obstruktion kennt.

FES102Ko_06.png

Die Restkoma versteckt sich ein wenig dadurch, weil sie senkrecht liegt und deshalb über das IGramm schwerer zu erkennen ist.
Sie erscheint in oberem Interferogramm durch eine leicht bauchige Verformung der waagrechten Streifen.

FES102Ko_07.jpg

Mit diesem Gesamt-Strehlergebnis läßt sich sehr gut leben.

FES102Ko_08.jpg

Im nächsten Schritt kann man den Farblängsfehler (obere Reihe), und den Gaußfehler (untere Reihe) der IGramm-Übersicht betrachten:
Bei diesem Verfahren wird der Fokus der Hauptfarbe Grün "eingefroren", d.h. diese Fokuslage nicht mehr verändert. Genauso macht es
jeder Beobachter, der auf den optimalen weil schärfsten Punkt fokussiert, tagsüber in der Regel bei hellgrün und nachts bei blaugrün.
In der oberen Reihe wäre also die Schnittweiten-Differenz über das Abkippen der Streifen nach oben (= kürzere Schnittweite) und nach
unten (= längere Schnittweite) ebenso erkennbar, wie die "M"-förm ige Verformung der mittleren Streifen bei Überkorrektur bzw. "W"-förmigen
Verformung bei Unterkorrektur in einer Mischung erkennbar. Die weiß-punktierte Hilfslinie zeigt jeweils den idealen Verlauf des Interferogrammes.

Die untere zweite Reihe der IGramme entsteht, wenn man mit der dig. Meßuhr eine Schnittweiten-Vermessung durchführt. Jetzt orientiert man sich
an der dunklen Mittellinie und hat im günstigsten Fall mit der sphärischen Aberration von Blau und Rot zu "kämpfen", d.h. ganz exakt ist der Null-
punkt wegen der Streifenbreite und anderer Verformungen nur schwer zu treffen. Immerhin genauer, als würde man den Foucault-Test bemühen,
aber bei einer Unschärfe im Bereich von ca. 5 Mikron, wie man bei Serien-Messung schnell erkennt. Wollte man also durch das visuelle Spektrum
mit ca. 30 Abstufungen zwischen 486.1 nm wave (Blau) und 656.3 nm wave (H-alpha Rot) "hantieren", und dazu noch 10 Einzel-Interferogramme
einer Farbe auswerten und mitteln wollen, so wäre das ein Programm über Monate für Leute, die sich langweilen. (Ist bereits dieser Bericht weit mehr,
als man den Certifikaten von ZYGO oder LZOS entnehmen kann. Es resultiert daher, daß die Ergebnisse von Optik-Designern nur schwer auf die praktische
Vermessung von Objektiven anwendbar ist.

FES102Ko_09.jpg

Zu meiner eigenen Übersicht erfolgen die Ergebnisse in dieser Tabelle, wobei der hohe Strehl bei allen Farben ebenso auffällt, wie die Differenz der
Farbschnittweiten zwischen digitalem Ergebnis und Power-Umrechnung - aber weniger signifikant, als man vermuten könnte.

FES102Ko_10.jpg

Am ehesten ließe sich dann das Farblängsfehler/Gaußfehler-Verhalten aller fünf Farben über ein Diagramm vergleichen, wobei die Säulen-Darstellung
exakter ist, als die Darstellung in Kurven, da man ja die Zwischenwerte nur interpoliert. Und wenn einer über 30 Farben ein Ergebnis aufstellt, dann
müßte er ebenfalls den exakten Nachweis führen, daß es sich tatsächlich um genau diesen Nanometer-Bereich handelt - der Informations-Wert wird
dadurch nicht größer.

Anmerkung:

Der obere Strehlwert der jeweiligen Säule entsteht, wenn man Power als Ausdruck des Farblängsfehlers deaktiviert, aber alle anderen Restfehler
zuläßt. Das entspräche einer Vorstellung, beim Vergleich auch die Fertigungs-Fehler zuzulassen.
Der darunter stehende Strehlwert im kleinen weißen Feld wäre der eigentliche Vergleichswert, der für den Farblängsfehler sowohl die Power
enthält, und für den Gaußfehler den Wert für die Spherical-Abweichung. Rest-Coma und -Astigmatismus müssen aber dann als Fertigungsfehler
abgezogen werden. Da aber in beiden Fällen die Strehlwerte sehr hoch sind, spielt dieser Unterschied eine eher geringe Rolle. Man kommt
also in einen Bereich, wo es unsinnig wird, APO's über die Prozent-Punkte Strehl miteinander vergleichen zu wollen. Auch der Unterschied zu
einem Triplet läßt sich weniger gut darstellen.

FES102Ko_11.jpg

Siehe auch:

TMB-Sanierung Nr. 105 LZOS Nr. 105/651
TMB-Sanierung Nr.105 LZOS Koma beseitigen
TMB APO Nr. 117 - 100/800 mein eigener
TMB 100/800 Nr. 169-22 sehr farbrein
TMB-APO-102/800 Störung der Homogenität
TMB APO Nr. 270 - 115/805
TMB APO Nr 354 LZOS (115/805) - hochwertige Optik
TMB APO # 056 LZOS for T.M.B. 130/1170 RC_Index 0.1809
TMB APO Nr. 191 - 152/1216
TMB 130/780 erfolgreiche Restauration LZOS # 020 / ~@~.se
TMB Super APO 80 / 480 farbiges IGramm
APM SUPER ED APO 107 f/6.5

 

You have no rights to post comments