A062 LZOS for APM P130-9 Nr 080 Apo D=130 F=1170 auf H-alpha optimiert

LZOS for APM P130/9 Nr. 080 Apo D=130 F=1170 auf H-alpha optimiert

Der Sternfreund wollte auf Nummer sicher gehen, (im doppelten Sinn) und kaufte einen farbreinen Super-APO zu einem erschwinglichen
Preis. Die Testergebnisse hier entsprechen punktgenau dem LZOS Test-Report. Das Optimum dieses Refraktors liegt im H-alpha Bereich.
Die interne Diskussion zum Thema Rest-Koma hat nur akademischen Wert, unter bestimmten Testbedingungen auf der opt. Bank kann
man sie sehen, am Sternhimmel bzw. künstlichen Stern sieht man sie nicht, das geht nur mit ganz feinen Pinholes von 3µ bis 5µ und
bei Höchstvergrößerungen in der Gegend von 600-fach und mehr.

Diesmal soll die Qualität dieser Optik etwas anders erläutert werden. Die Strehlwerte sind jenseits aller Diskussion hervorragend, eine Prinzipien-
Diskussion vermeiden wir hier, weil es in erster Linie ein Beobachtungsgerät ist und kein Diskussions-Gegenstand für eine Stammtisch-Runde.
Vor einem künstlichen Stern im Abstand von ca. 15 m erscheint dieses Objektiv bei 400-facher Vergrößerung ohne Zweifel makellos. Einen Koma-
Anteil von PV L/11.5 wird man selbst bei diesen harten TEstbedingungen nicht erkennen können. Am Himmel ohnehin auch nicht.

@APM_01.jpg

Im ersten Überblick-Test sieht man in einer Art Gesamtschau alle Restfehler, wie man sie nie in der Praxis sehen kann. Der Grund dafür ist a) der
doppelte Durchgang durch das Objektiv, (Autokollimations-Setup) b) feine Pinholes von 3µ - 5µ durchmesser und c) eine Höchstvergrößerung, die
einem 1.8 mm Okular entspricht. Links im Bild zunächst das grüne Spektrum der Hauptfarbe, aus der man auch fotografisch die tatsächliche Auflösung
ermitteln kann. Unter Beibehaltung dieser Fokuslage danach das gesamte Farbspektrum. (Bei einem ED-APO wird auf diese Art der Farblängsfehler
für Rot sichtbar.) Betrachtet man den rechten Bildteil genauer, dann zeigt der schwache 1. Beugungsring im Bereich 13:00 bis 17:00 Uhr, daß noch
eine Rest-Koma vorhanden ist, die sich später in der Größe von PV L/11.5 darstellt für 587.6 nm wave (gelb).
Die Auflösung dieses Objektivs entspricht in jedem Fall der Formel 138.4/Apertur und besser. Den Gegenbeweis liefert das Foto: Es trennt zwei
enge Doppelsterne mit mindestens 6µ Abstand in der Bildebene und weniger. AuflösungsWinkel = inv tan(0.006/1170)

@APM_02.jpg

Die Farb-Interferogramme kann man auf mehrere Arten "lesen" und damit auswerten: Die Streifenbilder entstehen bei gleicher Fokuslage auf die Haupt-
Farbe Grün = e-Linie = 546.1 nm wave. Verwendung finden in allen Optik-Büchern einschließlich der Design-Programme die Fraunhoferschen Linien:
F-Linie (blau), 510 nm wave (blaugrün= Maximum es dunkeladaptierten Auges), e-Linie (grün = Maximum des tagadaptieren Auges) d-Linie (gelb) und
C-Linie (H-alpha Rot) Weitere Linien aus dem kurzen Spektrum werden vom Auge für gewöhnlich nicht mehr wahrgenommen. Siehe auch hier.

a) Der Farblängsfehler der jeweiligen Farbe dokumentiert sich über das Ab/Auf-kippen der jeweiligen mittleren Streifen. Am stärksten (!) sieht man diesen
Effekt noch beim blauen Interferogramm, dessen mittlere Streifen noch gut erkennbar nach oben abkippen. Es ist die Fokussierung, die dadurch sicht-
bar wird. Die dunkle Linie in der Mitte dient als Vergleichslinie. Alle Interferogramme haben "grob gesehen" einen gemeinsamen Fokus, wodurch das
Objektiv seine Farbreinheit bekommt. Daß sich trotzdem geringe Schnittweitendifferenzen ermitteln lassen, zeigt die folgende Übersicht.

b) Der Gaußfehler bzw. farbabhängige Öffnungsfehler zeigt sich am deutlichsten bei der Überkorrektur von Blau: Die mittleren Streifen des blauen IGrammes
sind "M"-förmig überlagert, während die roten Interferenz-Linie nahezu gerade sind. Dort zeigt sich aber ein anderer Rest-Fehler:

c) Der Coma-Effekt für die Rest-Coma von PV L/11.5 ist u.a. erkennbar über die "S"-förmige Überlagerung der mittleren Streifen, wenn die Koma-Figur waargecht
liegt. Bei senkrechter Lage verformen sich die Streifen tonnenförmig oder kissenförmig, je nach Fokussierung. Ohne also das jeweilige Streifenbild auswerten zu
müssen, sind bereits bestimmte Restfehler eindeutig zu erkennen.

d) Auswertungs-Vergleich zwischen LZOS Test Report (links) und meiner Auswertung (rechts)

Bei 532 nm wave bekommt LZOS einen PV-Wert von 0.210*L (L/4.7), bei mir sind es PV L/0.186*L (L/5.4) für 546.1 nm wave Wellenlänge.
Auch die Strehlwerte gleichen sich aufs Haar: LZOS Strehl 0.954/532 nm wave Rohr Strehl 0.956/546.1 nm wave. Diese Werte sind jeweils
GesamtWerte aus denen die Restfehler noch nicht zu erkennen sind, wie Astigm, Koma und Spherical, deren Anteile später dargestellt werden.
@APM_03.jpg

Die 3D-Wellenfront-Darstellung auf dem LZOS Test Report zeigt deutlich eine Koma-Figur, die etwa waagrecht liegt. Ebenso zeigt meine Wellenfront-Darstellung
diese Restkoma, wenn man sich die LZOS-Darstellung nur horizontal gespiegelt vorstellt. Es müßten nur die Streifenbilder entsprechend gedreht/gespiegelt werden.

@APM_07.jpg
Der Zernike Zoo. In ein mathematische System brachte das Frits Zernike (* 16. Juli 1888 in Amsterdam; † 10. März 1966 in Naarden) , ein niederländischer Physiker
und Nobelpreisträger.
Die Wellenfront-Darstellung wird hierbei in hierarchische Stufen zerlegt. Wie das im Idealfall aussieht, zeigt der Link oberhalb. So kann es also sein, daß sich die Rest-
fehler der einzelnen Stufen gegenseitig aufheben oder verstärken, sodaß eine Art Summenbild entsteht, und zwar nicht nur bezogen auf die Koma, sondern zugleich
auf Astigmatismus und Spherical.
@APM_04.jpg
Für die e-Linie ) 546.1 nm wave (grün) ergibt sich deshalb folgende differenzierte Auswertung.

@APM_05.jpg

Da aber das Optimum des Objektivs mehr in Richtung H-Alpha zu suchen ist, ergibt die Auswertung für die d-Linie = 587.6 nm wave (gelb)
noch bessere PV- und Strehlwerte, natürlich auch hinsichtlich der Restfehler. Auch läßt sich rein formal der Restfehler mit der größten
Abgweichung bestimmen, was aber bei diesen Zahlen mehr eine theoretische Spielerei wäre.

@APM_06.jpg

Auch die Farbreinheit kann man unterschiedlich darstellen: Der Standard-Test wäre dafür zunächst der Sterntest und dort der Farbsaum intra/extrafokal.
Bei diesem Objektiv wird man das vergeblich suchen. Eine weitere Möglichkeit bietet der Foucault-Test. Je "weißlicher" der Foucault-Test auffällt, umso
farbreiner ist ein Objektiv. Ein reines Spiegelsystem zeigt bei diesem Test folglich keine Farbeffekte mehr. Die Aufteilung der Farben in Links und Rechts
sind ein Hinweis auf den Farblängsfehler, die sichelförmige Farbverteilung ein Hinweis auf den Gaußfehler. Auch die obere Übersicht der spektralen IGramme
ist ein deutlicher Hinweis auf die Farbreinheit dieses Objektivs, aus dem dann die Rest-Chromasie-Indexzahl ermittelt werden kann: Ein sehr guter
Wert im Übrigen. Eingeblendet ist auch das Verfahren, dies über die Power zu berechnen, da in diesem konkreten Fall die digitale Vermessung an der
Rest-Koma scheiterte.

@APM_08.jpg

Zerlegt man das Foucault-Bild in seine RGB-Farben, dann erscheint auch hier Blau überkorrigiert und Rot perfekt - auch ein Hinweis auf das Optimum
für den H-alpha Bereich. Was aber nicht bedeutet, daß man mit diesem Objektiv ausschließlich im H-alpha Spektrum beobachten muß. Damit soll nur
gezeigt werden, daß man mit einer reinen Strehl-Diskussion auf Basis von 546.1 nm wave oder vielleicht 510 nm wave diese Optik nicht richtig beschreiben
kann. In diesem Zusammenhang führt auch die Poly-Strehl-Diskussion zu keinem Ziel, weil sie a) nur auf der Design-Ebene stattfinden kann, ohne
ausreichende Vergleichsmöglichkeiten, und weil sich b) die Fertigung in der Regl an solche "Spielereien" überhaupt nicht hält, bzw. in der Praxis sogar
bessere Werte herauskommen, als vom Design ermittelt, wei ein anderer Fall beweist.

@APM_09.jpg

Mittlerweile ziert eine Reihe unterschiedlicher Interferometer meine opt. Werkstatt. Der Scatter Plate Interferometer ist dazugekommen mit dem Vorteil,
daß diese Variante bis f/4 exakt auf der opt. Achse arbeitet ohne weitere opt. Komponenten im Testaufbau dieses Interferometers, was bei obstruierten
Systemen wegen der Vignettierung wichtig ist. Bei jedem dieser Interferometer gibt es andere Schnellverfahren, zu einem Interferogramm zu kommen.

Bei LZOS verwendet man offenbar den Twyman-Green Interferometer, der eine Sphäre als Referenz-Fläche benutzt. Bei diesem Interferometer muß der
Teilerewürfel eine hohe Genauigkeit haben, da man sich sonst Astigmatismus einhandelt. Ein Problem bei diesem IMeter-Typ ist auch die verwendete
Lichtquelle, die frei von Artefakten sein muß. Genaugenommen würdigt dieser Test Report das Objektiv nur unzureichend, wenn man nicht gerade
Strehl-fixiert ist.


@APM_10.jpg

...................